大 GPU 优势在于通过并行计算实现大量重复性计算。GPGPU即通用GPU,能够帮助 CPU 进行非图形相关程序的运算。在类似的价格和功率范围内,GPU 能提供比CPU 高得多的指令吞吐量和内存带宽。GPGPU 架构设计时去掉了 GPU 为了图形处理而设计的加速硬件单元,保留了 GPU 的 SIMT架构和通用计算单元,通过 GPU 多条流水线的并行计算来实现大量计算。
所以基于 GPU 的图形任务无法直接运行在 GPGPU 上,但对于科学计算,AI 训练、推理任务(主要是矩阵运算)等通用计算类型的任务仍然保留了 GPU 的优势,即高效的搬运和运算有海量数据的重复性任务。目前主要用于例如物理计算、加密解密、科学计算以及比特币等加密货币的生成。
下载链接:
203份重磅ChatGPT专业报告
1、网信办发文,高度重视AIGC安全
2、规范性政策或促进AIGC产业长期健康发展
随着超算等高并发性计算的需求不断提升,英伟达以推动 GPU 从专用计算芯片走向通用计算处理器为目标推出了GPGPU,并于 2006 年前瞻性发布并行编程模型 CUDA,以及对应工业标准的 OpenCL。CUDA 是英伟达的一种通用并行计算平台和编程模型,它通过利用图形处理器 (GPU)的处理能力,可大幅提升计算性能。CUDA 使英伟达的 GPU 能够执行使用 C、C++、Fortran、OpenCL、DirectCompute 和其他语言编写的程序。在 CUDA 问世之前,对 GPU 编程必须要编写大量的底层语言代码;CUDA 可以让普通程序员可以利用 C 语言、C++等为 CUDA 架构编写程序在 GPU平台上进行大规模并行计算,在全球 GPGPU 开发市场占比已超过 80%。GPGPU 与 CUDA 组成的软硬件底座,构成了英伟达引领 AI 计算及数据中心领域的根基。
GPU 架构升级过程计算能力不断强化,Hopper 架构适用于高性能计算(HPC)和 AI 工作负载。英伟达在架构设计上,不断加强 GPU 的计算能力和能源效率。在英伟达 GPU 架构的演变中,从最先 Tesla 架构,分别经过 Fermi、Kepler、Maxwell、Pascal、Volta、Turing、Ampere至发展为今天的 Hopper 架构。
以 Pascal 架构为分界点,自 2016 年后英伟达逐步开始向深度学习方向演进。根据英伟达官网,Pascal 架构,与上一代 Maxwell 相比,神经网络训练速度提高 12 倍多,并将深度学习推理吞吐量提升了 7 倍。
Volta 架构,配备 640 个 Tensor 内核增强性能,可提供每秒超过 100 万亿次(TFLOPS)的深度学习性能,是上一代 Pascal 架构的 5 倍以上。
Turing 架构,配备全新 Tensor Core,每秒可提供高达 500 万亿次的张量运算。
Ampere 架构,采用全新精度标准 Tensor Float 32(TF32),无需更改任何程序代码即可将AI 训练速度提升至 20 倍。
最新 Hopper 架构是第一个真正异构加速平台,采用台积电 4nm 工艺,拥有超 800 亿晶体管,主要由 Hopper GPU、Grace CPU、NVLINK C2C 互联和 NVSwitch 交换芯片组成,根据英伟达官网介绍,其性能相较于上一代 Megatron 530B 拥有 30 倍 AI 推理速度的提升。
AMD 数据中心领域布局全面,形成 CPU+GPU+FPGA+DPU 产品矩阵。与英伟达相比,AMD 在服务器端 CPU 业务表现较好,根据 Passmark 数据显示,2021 年 Q4 AMD EPYC 霄龙系列在英特尔垄断下有所增长,占全球服务器 CPU 市场的 6%。依据 CPU 业务的优势,AMD 在研发 GPGPU 产品时推出 Infinity Fabric 技术,将 EPYC 霄龙系列 CPU 与 Instinct MI 系列 GPU 直接相连,实现一致的高速缓存,形成协同效应。此外,AMD 分别于 2022 年 2 月、4 月收购 Xilinx 和Pensando,补齐 FPGA 与 DPU 短板,全面进军数据中心领域。
软件方面,AMD 推出 ROCm 平台打造 CDNA 架构,但无法替代英伟达 CUDA 生态。AMD 最新的面向 GPGPU 架构为 CDNA 系列架构,CDNA 架构使用 ROCm 自主生态进行编写。AMD 的 ROCm 生态采取 HIP 编程模型,但 HIP 与 CUDA 的编程语法极为相似,开发者可以模仿 CUDA 的编程方式为 AMD 的 GPU 产品编程,从而在源代码层面上兼容 CUDA。所以从本质上来看,ROCm 生态只是借用了 CUDA 的技术,无法真正替代 CUDA 产生壁垒。
软硬件共同布局形成生态系统,造就英伟达核心技术壁垒。
硬件端:基于 GPU、DPU 和 CPU 构建英伟达加速计算平台生态:
1)主要产品 Tesla GPU 系列迭代速度快,从 2008 年至 2022 年,先后推出 8 种 GPU 架构,平均两年多推出新架构,半年推出新产品。超快的迭代速度使英伟达的 GPU 性能走在 AI 芯片行业前沿,引领人工智能计算领域发生变革。
2)DPU 方面,英伟达于 2019 年战略性收购以色列超算以太网公司 Mellanox,利用其InfiniBand(无限带宽)技术设计出 Bluefield 系列 DPU 芯片,弥补其生态在数据交互方面的不足。InfiniBand 与以太网相同,是一种计算机网络通信标准,但它具有极高的吞吐量和极低的延迟,通常用于超级计算机的互联。英伟达的 Bluefield DPU 芯片可用于分担 CPU 的网络连接算力需求,从而提高云数据中心的效率,降低运营成本。
3)CPU 方面,自主设计 Grace CPU 并推出 Grace Hopper 超级芯片,解决内存带宽瓶颈问题。采用 x86 CPU 的传统数据中心会受到 PCIe 总线规格的限制,CPU 到 GPU 的带宽较小,算效率受到影响;而 Grace Hopper 超级芯片提供自研 Grace CPU+GPU 相结合的一致内存模型,从而可以使用英伟达 NVLink-C2C 技术快速传输,其带宽是第 5 代 PCIe 带宽的 7 倍,极大提高了数据中心的运行性能。
相较于 A100 GPU,H100 性能再次大幅提升。在 H100 配备第四代 Tensor Core 和 Transformer引擎(FP8 精度),同上一代 A100 相比,AI 推理能力提升 30 倍。其核心采用的是 TSMC 目前最先进的 4nm 工艺,H100 使用双精度 Tensor Core 的 FLOPS 提升 3 倍。
在算力需求快速增长的进程中,国产 GPU 正面临机遇与挑战并存的局面。目前,国产 GPU 厂商的核心架构多为自研,难度极高,需投入海量资金以及高昂的人力和时间成本。由于我国 GPU 行业起步较晚,缺乏相应生态,目前同国际一流厂商仍存在较大差距。在中美摩擦加剧、经济全球化逆行的背景下,以海光信息、天数智芯、壁仞科技和摩尔线程等为代表的国内 GPU 厂商进展迅速,国产 GPU 自主可控未来可期。
以Open AI的算力基础设施为例,芯片层面 GPGPU 的需求最为直接受益,其次是 CPU、AI 推理芯片、FPGA 等。AI 服务器市场的扩容,同步带动高速网卡、HBM、DRAM、NAND、PCB 等需求提升。
下载链接:
1、NVIDIA A100 Tensor Core GPU技术白皮书
2、NVIDIA Kepler GK110-GK210架构白皮书
3、NVIDIA Kepler GK110-GK210架构白皮书
4、NVIDIA Kepler GK110架构白皮书
5、NVIDIA Tesla P100技术白皮书
6、NVIDIA Tesla V100 GPU架构白皮书
7、英伟达Turing GPU 架构白皮书
本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料。

免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。
电子书<服务器基础知识全解(终极版)>更新完毕。
获取方式:点击“小程序链接”即可查看182页PPT可编辑版本和PDF阅读版本详情。
温馨提示:
请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。

继续阅读
阅读原文