近日,由清华大学脑与智能实验室复杂网络智能中心(CCNI)主任Carlo Vittorio Cannistraci教授与北京大学韩敬东教授共同指导的国际科学家团队在《先进科学》(Advanced Science杂志上发表了一项研究。此项研究提出了一种人工智能算法,可以通过分析基因组信息恢复组织中单个细胞的三维空间结构
An international team of scientists at Tsinghua and Peking university published a study on Advanced Science, co-directed by Professor Carlo Vittorio Cannistraci, chief of the Center for Complex Network Intelligence (CCNI) at the Tsinghua Laboratory of Brain and Intelligence, proposing an artificial intelligence algorithm that analysing the genomic information can recover the three-dimensional spatial organization of single cells in a tissue.
     Carlo Vittorio Cannistraci教授是清华大学脑与智能实验室复杂网络智能中心的主任,也是该研究的通讯作者之一,在该研究中负责复杂物理建模和算法设计。他说:“在我童年时,我曾想知道自然是如何决定我周围的花朵和昆虫的形状的。后来,在清澈的西西里海域,我把头浸入水中屏住呼吸,潜入水下世界,同样的问题出现在我脑海中:自然是如何决定海葵和海星的形状的?当我开始在学校学习生物学时,这个问题以一种更具体的方式重新出现在我面前:我的身体组织中的细胞空间结构是如何如此精确地形成的?我们体内的单个细胞如何通过遗传指纹和基因组编程向三维 (3D) 空间组织连续体进化?”这正是当今生物物理学中的一个研究方向。
     Cannistraci教授绝对无法想象,他在2016年发明的联合嵌入(Coalescent Embedding)这种用于将复杂网络映射到几何空间的机器学习方法,竟然也能为这个尚需漫长道路的谜题提供里程碑式的解决方案。在科学中,这个谜题被称为“单细胞三维空间组织的从头重构”。2018年,Cannistraci教授时任德国德累斯顿工业大学(TU Dresden)BIOTEC研究所科学家团队的首席研究员,当时他在中国做了关于联合嵌入的研讨会报告。联合嵌入是一种能够利用复杂网络重建连接系统组成部分的隐藏几何结构的算法。在研讨会上,他举了一个例子:利用一张表示大脑区域之间连接性的图,在不了解脑区的空间位置的情况下,联合嵌入算法能够重建人脑的三维解剖结构。北京大学的韩敬东教授出席了这次演讲,听完报告后,她向Cannistraci教授提出了自己的见解: “我认为您的人工智能算法可能有助于重建从组织中分离出的单细胞的三维空间结构,就像您为大脑区域所做的那样,也许可以通过嵌入局域性单细胞转录相似性网络来实现。”韩敬东教授的敏锐直觉使Cannistraci教授又一次面对他童年时期的谜题,而他从未注意到这与他目前的工作存在的潜在联系。与此同时,Cannistraci教授来到了清华大学,并在这里创建了复杂网络智能中心(CCNI)。这两位科学家合作了5年,以寻求韩敬东教授这个想法的解决方案。Cannistraci 教授具有设计基于复杂网络的人工智能算法的能力,而韩敬东教授则具有计算和实验系统生物学方面的专业知识。
     这项工作的成果是一种称为de novo coalescent embedding (D-CE)的新算法,它是基于基因组的单细胞三维空间组织重建的联合嵌入理论的进化版本。这项新研究的结果现已发表在著名杂志《先进科学》(Advanced Science)上,研究结果表明,的确可以通过构建单细胞转录组的网络,并使用联合嵌入技术将该网络映射到三维几何空间中,从而直接从其基因表达中推断出单细胞的三维空间结构。
图:这个名为de novo coalescent embedding(D-CE)的算法,基于基因组重建单细胞三维空间组织结构,表明可以通过构建转录组概况网络,直接从基因表达中推断出单细胞的三维空间结构。利用联合嵌入技术将该网络映射到三维几何空间中,从而实现单细胞的空间重建。
Graphic: Representation of the topological and geometrical paths in a complex network and their congruence with the underlying geometry.
Prof. Carlo Vittorio Cannistraci who is chair professor of complex network intelligence at Tsinghua University, and a corresponding author of the study for the complex physics modelling and the algorithm design says: “During my childhood, I wondered how nature could decide the shape of flowers and insects around me. Then, in the crystal-clear Sicilian sea, I put my head underwater holding the breath, freediving the submarine world, and the same question appeared in my mind on the shape of anemones and starfishes. When I started to study biology at school, the question revisited on me in a more precise way: how could the spatial organization of cells in my body tissues arise so precisely? How the individual single cells in our bodies are genetically fingerprinted and genomically programmed to evolve towards a three-dimensional (3D) spatial tissue continuum?”. This is what we call today a topic of physics of life.
Prof. Cannistraci would never imagine that Coalescent Embedding, a machine learning methodology that he invented in 2016 to map complex networks in a geometrical space, could also pave a milestone solution in the still long path to solve this enigma which, in science, is called: “de novo reconstruction of single cell 3D spatial tissue organization”. In 2018 professor Cannistraci, at that moment principal investigator of a team of scientists at the BIOTEC institute of TU Dresden in Germany, was presenting a seminar on Coalescent Embedding in China. Coalescent Embedding is an algorithm that can recover the hidden geometry of the parts composing a connected system starting from its complex network. During the seminar, he showed an example: taking a graph representing connectivity between brain regions, without any knowledge about the spatial location of the brain areas, Coalescent Embedding algorithm was able to reconstruct the 3D anatomical organization of the human brain. Prof. Jing-Dong Jackie Han from Peking University was present at that talk and was inspired, after the talk approached Prof. Cannistraci with a  comment: “I think your artificial intelligence algorithm may help to reconstruct the spatial 3D organization of single cells dissected from a tissue, as you did for the brain’s areas, perhaps by embedding single-cells transcriptomic similarity networks ”. That keen intuition of Prof. Han put Prof. Cannistraci in front of one of the enigmas that have populated his childhood without he ever noticed a possible link with his current work. Meanwhile, Prof. Cannistraci moved to Tsinghua University in China founding the Center of Complex Network Intelligence (CCNI). The two scientists teamed up for 5 years together with their groups to address Prof. Han’s proposal. Prof. Cannistraci with his ability to design network-based algorithms for artificial intelligence and Prof. Han with her expertise in computational and experimental systems biology.
The result of this effort is a new algorithm called de novo coalescent embedding (D-CE) which is an evolution of the coalescent embedding theory for genome-based reconstruction of single cell 3D spatial tissue organization. The results of this new study are now published on the prestigious journal Advanced Science, and they show that indeed it is possible to infer 3D spatial organization of single cells directly from their gene expression, by building a network of their transcriptomic profiles and performing the mapping of this network in a 3D geometrical space using coalescent embedding techniques.
发表文章
“Spatial Reconstruction of Oligo and Single Cells by De Novo Coalescent Embedding of Transcriptomic Networks”
作者:  Yuxuan Zhao, Shiqiang Zhang, Jian Xu, Yangyang Yu, Guangdun Peng,Carlo Vittorio Cannistraci, Jing-Dong J. Han
2023年7月18日发表于《先进科学》Advanced Science
https://doi.org/10.1002/advs.202206307
作者介绍
Author

Carlo Vittorio Cannistraci
周亚辉讲席教授
清华大学脑与智能实验室(THBI)首席研究员
清华大学脑与智能实验室(THBI)复杂网络智能中心(CCNI)主任
Cannistraci教授是一位理论工程师和计算创新者,他是清华大学脑与智能实验室(THBI)首席研究员,THBI复杂网络智能中心(CCNI)主任,也是清华大学计算机系和生物医学工程系兼职教授。
Carlo Vittorio Cannistraci is a theoretical engineer and computational innovator. He is a Professor in the Tsinghua Laboratory of Brain and Intelligence (THBI) and an adjunct professor in the Department of Computer Science and in the Department of Biomedical Engineering at Tsinghua University. He directs the Center for Complex Network Intelligence (CCNI) in THBI, which seeks to create pioneering algorithms at the interface between information science, physics of complex systems, complex networks and machine intelligence, with a focus in brain/life-inspired computing for big data analysis. These computational methods are often applied to precision biomedicine, neuroscience, social and economic science.
https://brain.tsinghua.edu.cn/en/info/1010/1003.htm
韩敬东 教授 
北京大学
联系方式 / Press Contact
Carlo Vittorio Cannistraci Prof. PhD. Eng.
邮箱 / E-mail: 
研究机构
Research institution
清华大学脑与智能实验室(THBI)
清华大学脑与智能实验室(Tsinghua Laboratory of Brain and Intelligence, THBI)是清华大学校级实体跨学科研究所。THBI专注于脑科学与人工智能领域的交叉科学研究,旨在回答智能的本质是什么这一核心科学问题。https://brain.tsinghua.edu.cn/en/index.htm
THBI复杂网络智能中心(CCNI)
THBI复杂网络智能中心(CCNI)研究介于信息科学、复杂系统物理学、复杂网络和机器智能等领域之间的开创性算法,重点运用于大数据分析的脑、生物启发式计算。这些计算方法经常应用在精准生物医学、神经科学、社会和经济科学等领域。
更多内容请关注
继续阅读
阅读原文