海归学者发起的公益学术平台
分享信息,整合资源

交流学术,偶尔风月
体光伏效应是基本的光电转换效应之一,特指非中心对称材料中自发产生的光电流。与传统的半导体光伏效应不同,体光伏效应不受到Shockley–Queisser 极限的约束,可以实现更高的光电转换效率,因而在过去二十年得到广泛的关注。已有的体光伏效应研究集中于以钙钛矿氧化物为主的无机铁电材料,如BiFeO3、PbTiO3等。相比氧化物,有机材料具有价格低廉、易合成、带隙小且易调控等优势。前期相关研究已经在低温有机固体中发现了光伏效应,然而如何在更高温度,如室温下获得有机光伏响应仍是一个挑战。
来自韩国蔚山国立科学技术学院的Noejung Park教授等综合利用了多种第一原理计算方法,以分子晶体富烯-对氯苯醌(TTF-CA)为例讨论了有机固体在不同温度下的光伏特性。TTF-CA晶体由两种分子TTF和CA有序堆叠而成,具有两种不同的相结构。在室温下晶体保持对称堆叠结构;低于81 K时堆叠发生二聚化,导致正负电荷中心分离,沿堆叠方向表现出铁电性。计算发现,TTF-CA低温相具有体光伏效应,这是由其沿堆叠方向的铁电性导致的。其光伏响应范围不仅包括可见光区,同时也包括部分红外光区。该结果不仅与已有实验报道吻合,并预测了新的响应频段。相比之下,高温相本身并没有光伏响应。由于高温相具有完美对称的结构,导致沿不同方向的位移电流完全相互抵消。作者提出通过引入外场等因素来破坏对称性,可望得到净位移电流。为此,他们开展了含时密度泛函计算,通过模拟外加电场作用下电荷密度随时间的演化来直接计算位移电流。结果表明,非对称外场的引入的确可以使高温相产生光伏响应。本研究的意义在于,证明了利用对称性设计可以在高温相的分子晶体中实现净位移电流,为实现室温光伏奠定了基础。
该文近期发表于npj Computational Materials 6: 6 (2020),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。
Releasing the hidden shift current in the TTF-CA organic molecular solid via symmetry lowering 
Bumseop Kim, Jeongwoo Kim, Dongbin Shin, Min Choi, Junhee Lee and Noejung Park,
Bulk photovoltaic effect, characterized by an excitation-driven unbiased spontaneous photocurrent, has attracted substantial attention mainly due to its potential for harvesting solar energy. Here, we investigate the photovoltaic characteristics of organic molecular solids and focus on the association between the photocurrent and the crystal symmetry in the exemplary case of etrathiafulvalene-p-chloranil. We perform comprehensive first-principles calculations, including direct evaluations of the excitedstate current via real-time propagations of the time-dependent density functional theory. We find that the charge shifting in the low-temperature phase is mainly driven by the intrachain ferroelectricity, which gives rise to a photocurrent not only in the visiblelight range but also near the band-edge infrared region. The shift current that is locked in the symmetry of the high-temperature phase can be released by introducing a potential asymmetry. We suggest that organic molecular solids can be exploited viaappropriate engineering to lower the symmetry, aiming at room-temperature photovoltaics.
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方
继续阅读
阅读原文