选自freecodecamp
作者:Tirmidzi Faizal Aflahi
机器之心编译
参与:李诗萌、杜伟
机器学习之路虽漫漫无垠,但莘莘学子依然纷纷投入到机器学习的洪流中。如何更有效地开始机器学习呢?所谓「八仙过海,各显神通」,本文作者以Python语言为工具进行机器学习,并以Kaggle竞赛中的泰坦尼克号项目进行详细解读。跟着小编来看看吧!
随着行业内机器学习的崛起,能够帮用户快速迭代整个过程的工具变得至关重要。Python,机器学习技术领域冉冉升起的一颗新星,往往是带你走向成功的首选。因此,用 Python 实现机器学习的指南是非常必要的。
用 Python 实现机器学习的介绍
那么为什么是 Python 呢?根据我的经验,Python 是最容易学习的编程语言之一。现在需要快速迭代整个过程,与此同时,数据科学家不需要深入了解这种语言,因为他们可以快速掌握它。
有多容易呢?
for
 anything 
in
 the_list:

print
(anything)
就这么容易。Python 的语法和英语(或人类语言,而不是机器语言)语法关系密切。在 Python 的语法中没有愚蠢的大括号造成的困扰。我有一个从事质量保证(Quality Assurance)工作的同事,虽然不是软件工程师,但她可以在一天内写出产品级的 Python 代码。(真的!)
我将在下文中介绍几个基于 Python 的库。作为数据分析师和数据科学家,我们可以利用他们的杰作来帮助我们完成任务。这些不可思议的库是用 Python 实现机器学习的必备工具。
NumPy
这是一个非常有名的数据分析库。从计算数据分布的中位数,到处理多维数组,NumPy 都可以帮你完成。
Pandas
这是用来处理 CSV 文件的。当然了,你还需要处理一些表格、查看统计数据等,那 Pandas 就是可以满足你的需求的工具。
Matplotlib
把数据存储在 Pandas 的数据框后,你可能需要做一些可视化来理解数据的更多信息。毕竟一图抵千言。
Seaborn
这是另一个可视化工具,但这个工具更侧重于统计结果的可视化,比如直方图、饼图、曲线图或相关性表等。
Scikit-Learn
这是用 Python 实现机器学习的终极工具。所谓用 Python 实现机器学习指的就是这个——Scikit-Learn。所有你需要的从算法到提升的内容都能在这里找到。
Tensorflow 和 Pytorch
针对这两个工具我不会说太多。但如果你对深度学习感兴趣的话,可以详细了解一下,它们值得你花时间去学习。(我下次会再写一篇关于深度学习的教程,敬请期待!)
Python 机器学习项目
当然,只是阅读和学习是没法让你达成心愿的。你需要实际练习。正如我博客中所说的,如果你没有深入数据的话,那学习这些工具将毫无意义。因此,我在这里介绍一个可以轻松找到 Python 机器学习项目的地方。
博客地址:https://thedatamage.com/
Kaggle 是一个可以直接研究数据的平台。你可以在这个平台中解决一些项目,并达到真的擅长机器学习的地步。你可能更感兴趣另外一些东西——Kaggle 举办的机器学习竞赛,奖金高达 100,000 美元。你可能会想着碰碰运气,哈哈。
Kaggle:https://www.kaggle.com/
但最重要的并不是钱——你真的可以在这里找到用 Python 实现的机器学习项目。你可以试着完成很多项目。但如果你是个新手,你可能会想参加这项竞赛。
我们将在后面的教程中用到一个示例项目:
泰坦尼克:从灾难中进行机器学习(https://www.kaggle.com/c/titanic
这就是众所周知的泰坦尼克号。这是一场发生在 1912 年的灾难,这场灾难波及到的乘客和机组成员共 2224 人,其中 1502 人遇难死亡。这项 Kaggle 竞赛(或者说是教程)提供了灾难中的真实数据。你的任务是解释这些数据,并预测出灾难中哪些人会活下来,哪些人不会。
用 Python 实现机器学习的教程
在深入了解泰坦尼克号的数据之前,我们要先安装一些必需的工具。
首先当然是 Python。第一次安装 Python 需要从官网上安装。你要安装 3.6 以上的版本,这样才能跟最新版本的库保持同步。
Python 官方网站:https://www.python.org/downloads/
然后可以用 Python 的 pip 安装所有的库。你刚刚下载的 Python 发行版会自动安装 pip。
需要的其他工具都可以用 pip 安装。打开终端、命令行或 PowerShell,命令如下:
pip 
install
 numpy

pip 
install
 pandas

pip 
install
 matplotlib

pip 
install
 seaborn

pip 
install
 scikit-learn

pip 
install
 jupyter
看起来一切都运行良好。但是等一下,什么叫 jupyter?jupyter 表示 Julia、Python 和 R,因此它实际上是 Jupytr。但这个单词看起来太奇怪了,所以他们把它变成了 Jupyter。这是一个很有名的笔记本,你可以在这个笔记本上写交互式的 Python 代码。
只要在终端中输入 jupyter notebook,就可以打开如下图所示的浏览器页面:
你可以把代码写在绿色矩形中,而且可以交互式地编写并评价 Python 代码。
现在你已经安装了所有的工具。我们开始吧!
数据探索
探索数据是第一步。你需要从 Kaggle 的 Titanic 页面下载数据,然后将下载的数据放到你启动 Jupyter 笔记本的文件夹中。
数据下载地址:https://www.kaggle.com/c/titanic/data
然后导入必要的库:
import
 numpy 
as
 np 

import
 pandas 
as
 pd

import
 matplotlib.pyplot 
as
 plt

import
 seaborn 
as
 sns

import
 warnings

warnings.filterwarnings(
'ignore'
)

%matplotlib 
inline
载入数据:
train_df=pd.read_csv(
"train.csv"
)

train_df.head()
输出如下:
这就是我们的数据。它有下面几列:
  • PassengerId,乘客的标识符;
  • Survived,他(她)是否存活了下来;
  • Pclass,舱室类别,也许 1 表示经济舱,2 表示商务舱,3 表示头等舱;
  • Name,乘客的名字;
  • Sex,性别;
  • Age,年龄;
  • SibSp,即兄弟姐妹(siblings)或配偶(spouses),表示在船上的兄弟姐妹以及配偶的数目;
  • Parch,即父母(Parents)或子女(Children),表示在船上的父母和子女的数目;
  • Ticket,船票详情;
  • Cabin,舱号,NaN 表示未知;
  • Embarked,登船的起始地,S 表示南安普顿(Southampton),Q 表示皇后镇(Queenstown),C 表示瑟堡(Cherbourg)
在探索数据时,常常会遇到数据缺失的问题。我们来看一下
defmissingdata(data):
    total = data.isnull().sum().sort_values(ascending = 
False
)

    percent = (data.isnull().sum()/data.isnull().count()*
100
).sort_values(ascending = 
False
)

    ms=pd.concat([total, percent], axis=
1
, keys=[
'Total'
'Percent'
])

    ms= ms[ms[
"Percent"
] > 
0
]

    f,ax =plt.subplots(figsize=(
8
,
6
))

    plt.xticks(rotation=
'90'
)

    fig=sns.barplot(ms.index, ms[
"Percent"
],color=
"green"
,alpha=
0.8
)

    plt.xlabel(
'Features'
, fontsize=
15
)

    plt.ylabel(
'Percent of missing values'
, fontsize=
15
)

    plt.title(
'Percent missing data by feature'
, fontsize=
15
)

return
 ms

missingdata(train_df)
我们会看到这样的结果:
舱号、年龄以及登船地的数据都有一些缺失值,而舱号信息有大量的缺失。我们需要对它们进行处理,也就是所谓的数据清理(Data Cleaning)。
数据清理
我们 90% 的时间都花在这上面。我们要针对每一个机器学习项目进行大量的数据清理。当数据清理干净时,我们就可以轻松地进行下一步了,什么都不用担心。
数据清理中最常用的技术是填充缺失数据。你可以用众数、平均数或中位数来填充缺失数据。选择这些数据没有绝对规则,你可以一一尝试,然后看看它们的表现如何。但是根据经验来讲,分类数据只能用众数,连续数据可以用中位数或平均数。所以我们用众数来填充登船地数据,用中位数来填充年龄数据。
train_df[
'Embarked'
].fillna(train_df[
'Embarked'
].mode()[
0
], inplace = 
True
)

train_df[
'Age'
].fillna(train_df[
'Age'
].median(), inplace = 
True
)
接下来的重要操作是删除数据,尤其针对大量缺失的数据。我们针对舱号数据进行以下处理:
drop_column = ['Cabin']

train_df.drop(drop_column, axis=1, inplace = True)
现在检查一下清理过的数据。
print('check the nanvaluein train data
')

print(train_df.isnull().sum())
完美!没有任何缺失数据了!这表示数据已经清理干净了。
特征工程
现在数据已经清理干净了。接下来我们要进行特征工程。
特征工程基本上就是根据当前可用数据发现特征或数据的技术。有几种方法可以实现这种技术。在很多时候这都是常识。
我们以登船地数据为例——这是用 Q、S 或 C 填充的数据。Python 库不能处理这个,因为它只能处理数字。所以你需要用所谓的独热向量化(One Hot Vectorization)来处理,它可以把一列变成三列。用 0 或 1 填充 Embarked_Q、Embarked_S 和 Embarked_C,来表示这个人是不是从这个港口出发的。
再以 SibSp 和 Parch 为例。这两列没有什么有趣的,但是你可能会想知道某个乘客有多少家人登上了这艘船。如果家人多的话可能会增加生存几率,因为他们可以互相帮助。从另一个角度说,单独登船的乘客可能很难生存下去。
因此你可以创建新的一列,这一列是成员数量(family size),family size = SibSp + Parch + 1(乘客自己)。
最后一个例子是以 bin 列为例的。由于你认为很难区分具有相似值的事物,所以这种操作创建了值范围(ranges of values),然后将多个值组合在一起。比如,5 岁和 6 岁的乘客之间有显著的差异吗?或者 45 和 46 岁的人之间有显著的差异吗?
这就是创建 bin 列的原因。也许就年龄而言,我们可以创建 4 列——幼儿(0~14 岁)、青少年(14~20 岁)、成年人(20~40 岁)以及年长的人(40 岁以上)。
编码如下:
all_data = train_df

for
 dataset 
in
 all_data :

    dataset[
'FamilySize'
] = dataset[
'SibSp'
] + dataset[
'Parch'
] + 
1
import
 re

# Define function to extract titles from passenger names
defget_title(name):
    title_search = re.search(
' ([A-Za-z]+)\.'
, name)

# If the title exists, extract and return it.
if
 title_search:

return
 title_search.group(
1
)

return""
# Create a new feature Title, containing the titles of passenger names
for
 dataset 
in
 all_data:

    dataset[
'Title'
] = dataset[
'Name'
].apply(get_title)

# Group all non-common titles into one single grouping "Rare"
for
 dataset 
in
 all_data:

    dataset[
'Title'
] = dataset[
'Title'
].replace([
'Lady'
'Countess'
,
'Capt'
'Col'
,
'Don'

'Dr'
'Major'
'Rev'
'Sir'
'Jonkheer'
'Dona'
], 
'Rare'
)

dataset[
'Title'
] = dataset[
'Title'
].replace(
'Mlle'
'Miss'
)

    dataset[
'Title'
] = dataset[
'Title'
].replace(
'Ms'
'Miss'
)

    dataset[
'Title'
] = dataset[
'Title'
].replace(
'Mme'
'Mrs'
)

for
 dataset 
in
 all_data:

    dataset[
'Age_bin'
] = pd.cut(dataset[
'Age'
], bins=[
0
,
14
,
20
,
40
,
120
], labels=[
'Children'
,
'Teenage'
,
'Adult'
,
'Elder'
])

for
 dataset 
in
 all_data:

    dataset[
'Fare_bin'
] = pd.cut(dataset[
'Fare'
], bins=[
0
,
7.91
,
14.45
,
31
,
120
], labels [
'Low_fare'
,
'median_fare'
'Average_fare'
,
'high_fare'
])


traindf=train_df

for
 dataset 
in
 traindf:

    drop_column = [
'Age'
,
'Fare'
,
'Name'
,
'Ticket'
]

    dataset.drop(drop_column, axis=
1
, inplace = 
True
)

drop_column = [
'PassengerId'
]

traindf.drop(drop_column, axis=
1
, inplace = 
True
)

traindf = pd.get_dummies(traindf, columns = [
"Sex"
,
"Title"
,
"Age_bin"
,
"Embarked"
,
"Fare_bin"
],

                             prefix=[
"Sex"
,
"Title"
,
"Age_type"
,
"Em_type"
,
"Fare_type"
])
现在,你已经创建完成所有的特征了。接着我们看看这些特征之间的相关性:
sns.heatmap(traindf.corr(),annot=True,cmap='RdYlGn',linewidths=0.2) 
#data.corr()-->correlation matrix
fig=plt.gcf()

fig.set_size_inches(20,12)

plt.show()
相关值接近 1 意味着高度正相关,-1 意味着高度负相关。例如,性别为男和性别为女之间就呈负相关,因为必须将乘客识别为一种性别(或另一种)。此外,你还可以看到,除了用特征工程创建的内容外,没有哪两种是高度相关的。这证明我们做得对。
如果某些因素之间高度相关会怎么样?我们可以删除其中的一个,新列中的信息并不能给系统提供任何新信息,因为这两者是完全一样的。
用 Python 实现机器学习
现在我们已经到达本教程的高潮——机器学习建模。
from
 sklearn.model_selection 
import
 train_test_split 
#for split the data
from
 sklearn.metrics 
import
 accuracy_score  
#for accuracy_score
from
 sklearn.model_selection 
import
 KFold 
#for K-fold cross validation
from
 sklearn.model_selection 
import
 cross_val_score 
#score evaluation
from
 sklearn.model_selection 
import
 cross_val_predict 
#prediction
from
 sklearn.metrics 
import
 confusion_matrix 
#for confusion matrix
all_features = traindf.drop(
"Survived"
,axis=
1
)

Targeted_feature = traindf[
"Survived"
]

X_train,X_test,y_train,y_test = train_test_split(all_features,Targeted_feature,test_size=
0.3
,random_state=
42
)

X_train.shape,X_test.shape,y_train.shape,y_test.shape
Scikit-Learn 库中有多种算法供你选择:
  • 逻辑回归
  • 随机森林
  • 支持向量机
  • K 最近邻
  • 朴素贝叶斯
  • 决策树
  • AdaBoost
  • LDA
  • 梯度增强
你可能感到不知所措,想弄清什么是什么。别担心,只要将它当做「黑箱」对待就好——选一个表现最好的。(我之后会写一篇完整的文章讨论如何选择这些算法。)
以我最喜欢的随机森林算法为例:
from
 sklearn.ensemble 
import
 RandomForestClassifier

model = RandomForestClassifier(criterion=
'gini'
, n_estimators=
700
,

                             min_samples_split=
10
,min_samples_leaf=
1
,

                             max_features=
'auto'
,oob_score=
True
,

                             random_state=
1
,n_jobs=
-1
)

model.fit(X_train,y_train)

prediction_rm=model.predict(X_test)

print(
'--------------The Accuracy of the model----------------------------'
)

print(
'The accuracy of the Random Forest Classifier is'
, round(accuracy_score(prediction_rm,y_test)*
100
,
2
))

kfold = KFold(n_splits=
10
, random_state=
22
# k=10, split the data into 10 equal parts
result_rm=cross_val_score(model,all_features,Targeted_feature,cv=
10
,scoring=
'accuracy'
)

print(
'The cross validated score for Random Forest Classifier is:'
,round(result_rm.mean()*
100
,
2
))

y_pred = cross_val_predict(model,all_features,Targeted_feature,cv=
10
)

sns.heatmap(confusion_matrix(Targeted_feature,y_pred),annot=
True
,fmt=
'3.0f'
,cmap=
"summer"
)

plt.title(
'Confusion_matrix'
, y=
1.05
, size=
15
)
哇哦!准确率高达 83%。就第一次尝试而言,这个结果已经很好了。
交叉验证分数的意思是 K 折验证方法。如果 K=10,就是说要把数据分成 10 个变量,计算所有分数的均值,并将它们作为最终分数。
微调
现在你已经完成了用 Python 实现机器学习的步骤。但再加一个步骤可以让你得到更好的结果——微调。微调的意思是为机器学习算法找到最佳参数。以上面的随机森林代码为例:
model
 = RandomForestClassifier(criterion=
'gini'
, n_estimators=
700
,

                             min_samples_split=
10
,min_samples_leaf=
1
,

                             max_features=
'auto'
,oob_score=True,

                             random_state=
1
,n_jobs=-
1
)
你需要设置许多参数。顺便说一下,上面的都是默认值。你可以根据需要改变参数。但当然了,这需要花费很多时间。
别担心——有一种叫做网格搜索(Grid Search)的工具,它可以自动找出最佳参数。听起来还不错,对吧?
# Random Forest Classifier Parameters tunning 
model = RandomForestClassifier()

n_estim=range(100,1000,100)

## Search grid for optimal parameters
param_grid = {
"n_estimators"
 :n_estim}

model_rf = GridSearchCV(model,param_grid = param_grid, cv=5, scoring=
"accuracy"
, n_jobs= 4, verbose = 1)

model_rf.fit(train_X,train_Y)

# Best score
print(model_rf.best_score_)

#best estimator
model_rf.best_estimator_
好了,你可以自己尝试一下,并从中享受机器学习的乐趣。
总结
怎么样?机器学习看起来似乎并不难吧?用 Python 实现机器学习很简单。一切都已经为你准备好了。你可以做一些神奇的事,并给人们带来快乐。
原文链接:https://medium.freecodecamp.org/how-to-get-started-with-machine-learning-in-less-than-10-minutes-b5ea68462d23
本文为机器之心编译,转载请联系本公众号获得授权
✄------------------------------------------------
加入机器之心(全职记者 / 实习生):[email protected]
投稿或寻求报道:content@jiqizhixin.com
广告 & 商务合作:[email protected]
继续阅读
阅读原文