写在前面

继续之前没有介绍完的 Pre-training 部分,在上一篇中(BERT源码分析(PART II))我们已经完成了对输入数据的处理,接下来看看 BERT 是怎么完成「Masked LM」「Next Sentence Prediction」两个任务的训练。
  • run_pretraining[1]
除了代码块外部,在内部也有注释噢。之前代码黑色背景好像有点不舒服,换成白色试试
另外,把BERT源码分析系列整理成了PDF版本方便阅读,有需要的可以在文末获取(别急着拉到下面,先看完这篇

任务#1:Masked LM

get_masked_lm_output函数用于计算「任务#1」的训练 loss。输入为 BertModel 的最后一层 sequence_output 输出([batch_size, seq_length, hidden_size]),因为对一个序列的 MASK 标记的预测属于标注问题,需要整个 sequence 的输出状态。
defget_masked_lm_output
(bert_config, input_tensor, output_weights, positions,

label_ids, label_weights)
:

"""Get loss and log probs for the masked LM."""
# 获取mask词的encode
input_tensor = gather_indexes(input_tensor, positions)


with
tf.variable_scope(
"cls/predictions"
):

# 在输出之前添加一个非线性变换,只在预训练阶段起作用
with
tf.variable_scope(
"transform"
):

input_tensor = tf.layers.dense(

input_tensor,

units=bert_config.hidden_size,

activation=modeling.get_activation(bert_config.hidden_act),

kernel_initializer=modeling.create_initializer(

bert_config.initializer_range))

input_tensor = modeling.layer_norm(input_tensor)


# output_weights是和传入的word embedding一样的
# 这里再添加一个bias
output_bias = tf.get_variable(

"output_bias"
,

shape=[bert_config.vocab_size],

initializer=tf.zeros_initializer())

logits = tf.matmul(input_tensor, output_weights, transpose_b=
True
)

logits = tf.nn.bias_add(logits, output_bias)

log_probs = tf.nn.log_softmax(logits, axis=
-1
)


# label_ids表示mask掉的Token的id
label_ids = tf.reshape(label_ids, [
-1
])

label_weights = tf.reshape(label_weights, [
-1
])


one_hot_labels = tf.one_hot(

label_ids, depth=bert_config.vocab_size, dtype=tf.float32)


# 但是由于实际MASK的可能不到20,比如只MASK18,那么label_ids有2个0(padding)
# 而label_weights=[1, 1, ...., 0, 0],说明后面两个label_id是padding的,计算loss要去掉。
per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[
-1
])

numerator = tf.reduce_sum(label_weights * per_example_loss)

denominator = tf.reduce_sum(label_weights) +
1e-5
loss = numerator / denominator


return
(loss, per_example_loss, log_probs)


任务#2 Next Sentence Prediction

get_next_sentence_output函数用于计算「任务#2」的训练 loss。输入为 BertModel 的最后一层 pooled_output 输出([batch_size, hidden_size]),因为该任务属于二分类问题,所以只需要每个序列的第一个 token【CLS】即可。
defget_next_sentence_output(bert_config, input_tensor, labels):
"""Get loss and log probs for the next sentence prediction."""

# 标签0表示 下一个句子关系成立;标签1表示 下一个句子关系不成立。
# 这个分类器的参数在实际Fine-tuning阶段会丢弃掉
with
tf.variable_scope(
"cls/seq_relationship"
):

output_weights = tf.get_variable(

"output_weights"
,

shape=[
2
, bert_config.hidden_size],

initializer=modeling.create_initializer(bert_config.initializer_range))

output_bias = tf.get_variable(

"output_bias"
, shape=[
2
], initializer=tf.zeros_initializer())


logits = tf.matmul(input_tensor, output_weights, transpose_b=
True
)

logits = tf.nn.bias_add(logits, output_bias)

log_probs = tf.nn.log_softmax(logits, axis=
-1
)

labels = tf.reshape(labels, [
-1
])

one_hot_labels = tf.one_hot(labels, depth=
2
, dtype=tf.float32)

per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=
-1
)

loss = tf.reduce_mean(per_example_loss)

return
(loss, per_example_loss, log_probs)


自定义模型

module_fn_builder函数,用于构造 Estimator 使用的model_fn。定义好了上述两个训练任务,就可以写出训练过程,之后将训练集传入自动训练。
defmodel_fn_builder
(bert_config, init_checkpoint, learning_rate,

num_train_steps, num_warmup_steps, use_tpu,

use_one_hot_embeddings)
:


defmodel_fn(features, labels, mode, params):

tf.logging.info(
"*** Features ***"
)

for
name
in
sorted(features.keys()):

tf.logging.info(
" name = %s, shape = %s"
% (name, features[name].shape))


input_ids = features[
"input_ids"
]

input_mask = features[
"input_mask"
]

segment_ids = features[
"segment_ids"
]

masked_lm_positions = features[
"masked_lm_positions"
]

masked_lm_ids = features[
"masked_lm_ids"
]

masked_lm_weights = features[
"masked_lm_weights"
]

next_sentence_labels = features[
"next_sentence_labels"
]


is_training = (mode == tf.estimator.ModeKeys.TRAIN)


# 创建Transformer实例对象
model = modeling.BertModel(

config=bert_config,

is_training=is_training,

input_ids=input_ids,

input_mask=input_mask,

token_type_ids=segment_ids,

use_one_hot_embeddings=use_one_hot_embeddings)


# 获得MASK LM任务的批损失,平均损失以及预测概率矩阵
(masked_lm_loss,

masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(

bert_config, model.get_sequence_output(), model.get_embedding_table(),

masked_lm_positions, masked_lm_ids, masked_lm_weights)


# 获得NEXT SENTENCE PREDICTION任务的批损失,平均损失以及预测概率矩阵
(next_sentence_loss, next_sentence_example_loss,

next_sentence_log_probs) = get_next_sentence_output(

bert_config, model.get_pooled_output(), next_sentence_labels)


# 总的损失定义为两者之和
total_loss = masked_lm_loss + next_sentence_loss


# 获取所有变量
tvars = tf.trainable_variables()


initialized_variable_names = {}

scaffold_fn =
None
# 如果有之前保存的模型,则进行恢复
if
init_checkpoint:

(assignment_map, initialized_variable_names

) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)

if
use_tpu:


deftpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

return
tf.train.Scaffold()


scaffold_fn = tpu_scaffold

else
:

tf.train.init_from_checkpoint(init_checkpoint, assignment_map)


tf.logging.info(
"**** Trainable Variables ****"
)

for
var
in
tvars:

init_string =
""
if
var.name
in
initialized_variable_names:

init_string =
", *INIT_FROM_CKPT*"
tf.logging.info(
" name = %s, shape = %s%s"
, var.name, var.shape,

init_string)


output_spec =
None
# 训练过程,获得spec
if
mode == tf.estimator.ModeKeys.TRAIN:

train_op = optimization.create_optimizer(

total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)


output_spec = tf.contrib.tpu.TPUEstimatorSpec(

mode=mode,

loss=total_loss,

train_op=train_op,

scaffold_fn=scaffold_fn)

# 验证过程spec
elif
mode == tf.estimator.ModeKeys.EVAL:


defmetric_fn
(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,

masked_lm_weights, next_sentence_example_loss,

next_sentence_log_probs, next_sentence_labels)
:

"""计算损失和准确率"""
masked_lm_log_probs = tf.reshape(masked_lm_log_probs,

[
-1
, masked_lm_log_probs.shape[
-1
]])

masked_lm_predictions = tf.argmax(

masked_lm_log_probs, axis=
-1
, output_type=tf.int32)

masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [
-1
])

masked_lm_ids = tf.reshape(masked_lm_ids, [
-1
])

masked_lm_weights = tf.reshape(masked_lm_weights, [
-1
])

masked_lm_accuracy = tf.metrics.accuracy(

labels=masked_lm_ids,

predictions=masked_lm_predictions,

weights=masked_lm_weights)

masked_lm_mean_loss = tf.metrics.mean(

values=masked_lm_example_loss, weights=masked_lm_weights)


next_sentence_log_probs = tf.reshape(

next_sentence_log_probs, [
-1
, next_sentence_log_probs.shape[
-1
]])

next_sentence_predictions = tf.argmax(

next_sentence_log_probs, axis=
-1
, output_type=tf.int32)

next_sentence_labels = tf.reshape(next_sentence_labels, [
-1
])

next_sentence_accuracy = tf.metrics.accuracy(

labels=next_sentence_labels, predictions=next_sentence_predictions)

next_sentence_mean_loss = tf.metrics.mean(

values=next_sentence_example_loss)


return
{

"masked_lm_accuracy"
: masked_lm_accuracy,

"masked_lm_loss"
: masked_lm_mean_loss,

"next_sentence_accuracy"
: next_sentence_accuracy,

"next_sentence_loss"
: next_sentence_mean_loss,

}


eval_metrics = (metric_fn, [

masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,

masked_lm_weights, next_sentence_example_loss,

next_sentence_log_probs, next_sentence_labels

])

output_spec = tf.contrib.tpu.TPUEstimatorSpec(

mode=mode,

loss=total_loss,

eval_metrics=eval_metrics,

scaffold_fn=scaffold_fn)

else
:

raise
ValueError(
"Only TRAIN and EVAL modes are supported: %s"
% (mode))


return
output_spec


return
model_fn

主函数

基于上述函数实现训练过程
defmain(_):
tf.logging.set_verbosity(tf.logging.INFO)

ifnot
FLAGS.do_train
andnot
FLAGS.do_eval:

raise
ValueError(
"At least one of `do_train` or `do_eval` must be True."
)

bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

tf.gfile.MakeDirs(FLAGS.output_dir)


input_files = []

for
input_pattern
in
FLAGS.input_file.split(
","
):

input_files.extend(tf.gfile.Glob(input_pattern))


tf.logging.info(
"*** Input Files ***"
)

for
input_file
in
input_files:

tf.logging.info(
" %s"
% input_file)


tpu_cluster_resolver =
None
if
FLAGS.use_tpu
and
FLAGS.tpu_name:

tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(

FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)


is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2

run_config = tf.contrib.tpu.RunConfig(

cluster=tpu_cluster_resolver,

master=FLAGS.master,

model_dir=FLAGS.output_dir,

save_checkpoints_steps=FLAGS.save_checkpoints_steps,

tpu_config=tf.contrib.tpu.TPUConfig(

iterations_per_loop=FLAGS.iterations_per_loop,

num_shards=FLAGS.num_tpu_cores,

per_host_input_for_training=is_per_host))


# 自定义模型用于estimator训练
model_fn = model_fn_builder(

bert_config=bert_config,

init_checkpoint=FLAGS.init_checkpoint,

learning_rate=FLAGS.learning_rate,

num_train_steps=FLAGS.num_train_steps,

num_warmup_steps=FLAGS.num_warmup_steps,

use_tpu=FLAGS.use_tpu,

use_one_hot_embeddings=FLAGS.use_tpu)


# 如果没有TPU,会自动转为CPU/GPU的Estimator
estimator = tf.contrib.tpu.TPUEstimator(

use_tpu=FLAGS.use_tpu,

model_fn=model_fn,

config=run_config,

train_batch_size=FLAGS.train_batch_size,

eval_batch_size=FLAGS.eval_batch_size)


if
FLAGS.do_train:

tf.logging.info(
"***** Running training *****"
)

tf.logging.info(
" Batch size = %d"
, FLAGS.train_batch_size)

train_input_fn = input_fn_builder(

input_files=input_files,

max_seq_length=FLAGS.max_seq_length,

max_predictions_per_seq=FLAGS.max_predictions_per_seq,

is_training=
True
)

estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)


if
FLAGS.do_eval:

tf.logging.info(
"***** Running evaluation *****"
)

tf.logging.info(
" Batch size = %d"
, FLAGS.eval_batch_size)


eval_input_fn = input_fn_builder(

input_files=input_files,

max_seq_length=FLAGS.max_seq_length,

max_predictions_per_seq=FLAGS.max_predictions_per_seq,

is_training=
False
)


result = estimator.evaluate(

input_fn=eval_input_fn, steps=FLAGS.max_eval_steps)


output_eval_file = os.path.join(FLAGS.output_dir,
"eval_results.txt"
)

with
tf.gfile.GFile(output_eval_file,
"w"
)
as
writer:

tf.logging.info(
"***** Eval results *****"
)

for
key
in
sorted(result.keys()):

tf.logging.info(
" %s = %s"
, key, str(result[key]))

writer.write(
"%s = %s\n"
% (key, str(result[key])))

代码测试

预训练运行脚本
python run_pretraining.py \

--input_file=/tmp/tf_examples.tfrecord \

--output_dir=/tmp/pretraining_output \

--do_train=True \

--do_eval=True \

--bert_config_file=$BERT_BASE_DIR/bert_config.json \

--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \

--train_batch_size=32 \

--max_seq_length=128 \

--max_predictions_per_seq=20 \

--num_train_steps=20 \

--num_warmup_steps=10 \

--learning_rate=2e-5

之后你可以得到类似以下输出日志:
***** Eval results *****

global_step = 20

loss = 0.0979674

masked_lm_accuracy = 0.985479

masked_lm_loss = 0.0979328

next_sentence_accuracy = 1.0

next_sentence_loss = 3.45724e-05

最后贴一个预训练过程的 tips【反正我也做不了,看看就行= 。=】

Over~BERT源码系列到这里就结束啦
为了方便阅读我打包整理成了一个完整的PDF版本,关注NewBeeNLP公众号回复"BERT源码"即可下载
PS.到现在为止,BERT也更新了很多比如Whole Word Masking等等,所以之前有错误的还请大家一定指出,我好及时修正~

本文参考资料

[1]
run_pretraining: https://github.com/google-research/bert/blob/master/run_pretraining.py
继续阅读
阅读原文