2023年,饶毅实验室发表原始研究论文6篇。
它们属于4条线(lines of research):
论文1属于社会行为的分子机理自从2008年周传等发表果蝇打架分子机理以来,饶毅实验室共发表6篇社会行为分子机理的论文。最新一篇是2023年刘琰这篇。这篇文章也是饶毅实验室第4篇有关神经递质五羟色胺的论文。‍‍
论文2和5属于生物化学,也可以属于化学连接组学。从技术上,这是2022年刘玉祥等两篇JBC分离纯化蛋白激酶后的第3和第4篇生物化学分离纯化的论文。从概念上,它们属于化学神经递质,如果这样,就有12篇CCT相关论文,不过这两篇属于寻找新的神经递质,是崭新的路径。具体寻找神经递质的工作,饶毅实验室从2011年开始连续12年,遇到诸多困难,但不屈不饶,并且还在继续。‍‍‍‍
论文3和4属于研究睡眠的分子机理。此前,饶毅实验室有6篇涉及睡眠的分子机理,加上这2篇,现共有8篇睡眠的分子机理研究论文。其中论文3有很强的生物化学分析,所以,也可以算作为第5篇生物化学的论文。‍‍‍‍‍‍
论文6属于化学连接组(CCT)
饶毅实验室还有3条线的研究(GPCR、疾病的分子机理、信号转导),其中已经有稿件在2023年12月接受、将在2024年发表。
这7条的每一条线,有些是专门设计的,有些是已有研究生长出来的新线,不热心浅尝即止,而热衷深入探讨。
2023年显示公开记录进步的4条线,分别已经有6(社会行为)、5(生物化学)、12(化学连接组)、8(睡眠分子机理)篇论文。‍‍‍‍‍
2023
1) Liu Y, Shan L, Liu T, Li J, Chen YC, Sun CH, Yang CJ, Bian XL, Niu YY, Zhang C, Xi JZ and Rao Y (2023). Molecular and cellular mechanisms of the first social relationship: a conserved role of 5-HT from mice to monkeys, upstream of oxytocin. Neuron 111:1468-1685.
刘琰用小鼠、大鼠和猴做基因敲除,都发现神经递质五羟色胺调控第一个社会行为:新生儿恋母行为(maternal affiliation or attachment)。机制上,他们发现五羟色胺的下游是两个神经肽(催产素和减压素)。催产素和减压素被广为认为控制社会行为。如果饶毅实验室发现的五羟色胺在催产素和减压素上游是一个普遍的规律,也将推动对所有社会行为的理解,而不仅仅是恋母。
因为工作关系,刘琰把这一研究从北大带到了首都医科大学。
2) Jia X, Zhu J, Bian X, Liu S, Yu S, Liang W, Jiang L, Mao R and Rao Y (2023). Importance of glutamine in synaptic vesicles revealed by functional studies of SLC6A17 and its mutations pathogenic for intellectual disability. eLife 12:RP86972 (bioRxiv 2022.10.25.513688).
贾晓波等这篇文章有关谷氨酰胺(Gln)。原本目标是研究它是否神经递质。贾晓波等在突触囊泡内发现了Gln。但还缺乏它在刺激后释放、作用于突触后神经元、再摄取等其他方面证据。不过贾晓波等发现转运蛋白SLC6A17在体内主要转运Gln(以前认为可以转运9个氨基酸,但证据不是体内而是体外)。而且导致人类智力障碍的基因突变也导致Gln转运缺失。所以,文章以Gln转运与智障为关联发表。Gln能否作为神经递质有讨论,待进一步研究。
3)Li Y, Li CG, Liu YX,Yu JJ, Yang JQ, Cui YF, Wang TV,Li CY,Jiang LF, Song ML and Rao Y(2023). Sleep need, the key regulator of sleep homeostasis, is both indicated and controlled by phosphorylation of threonine 221 in salt inducible kinase 3. Genetics 224:iyad136 (bioRxiv 2021.11.06.467421).
李扬等这篇论文非常有趣。日本柳泽实验室于2016年发现Sik3对于睡眠很重要。李等报道Sik3上面有一个位点(T221),其磷酸化监控睡眠需求。而其磷酸化又转而控制Sik3本身的稳定性和催化活性。因此,单分子的单个位点化学修饰可以监控睡眠需求,而且可以控制睡眠。这对理解睡眠、以及筛选影响睡眠的药物带来显著推进。
4)Dai X, Yang W, Zhang X, Zhou E, Liu Y, Wang T, Zhang WX, Zhang XX and Rao Y (2023). ppGpp is present in, and functions to regulate sleep of, Drosophila. hLife 1:98-114 (bioRxiv 2022.11.17.516975).
戴西慧敏、杨威、周恩兴等通过筛选果蝇突变种,发现影响睡眠的基因。其中,有一个基因影响ppGpp的降解。ppGpp以前长期认为只在细菌里面有。他们证明果蝇体内存在ppGpp,而且提供实验证据显示它有功能(调节睡眠)。
5)Bian XL, Zhu JM, XB, Liang WJ, Yu SH and Rao Y (2023). Suggestion of creatine as a new neurotransmitter by approaches ranging from chemical analysis and biochemistry to electrophysiology. eLife 12:RP89317 (bioRxiv 2022.12.22.521565).
历经12年,饶毅实验室披荆斩棘寻找研究新的神经递质。卞希玲、祝婕敏、贾晓波等为共同第一作者的这篇论文,总结了他们研究肌酸的结果。它储存于突触囊泡、受刺激可以释放、可以作用于突触后细胞、可以再摄取。
6) Mao R, Yu J, Deng B, Dai X, Du Y, Du S, Zhang WX and Rao Y (2023). Conditional chemoconnectomics: a set of libraries targeting all chemical transmission corresponding genes efficiently. eLife 12:RP91927 (bioRxiv2023.09.26.559642).
毛仁波等继续饶毅实验室的化学连接组(CCT)研究,制造了条件性CCTomics(cCCTomics)的整套工具,并证明切实可行。
Original Research Papers:
1) Rao Y, Jan LY and Jan YN (1990). Similarity of the product of the Drosophila neurogenic gene big brain to transmembrane channel proteins. Nature 345:163-167.
2) Rao Y, Vaessin H, Jan LY and Jan YN (1991). Neuroectoderm in Drosophila embryos is dependent on the mesoderm for the positioning but not for formation. Genes Dev 5:1577-1588. 
3) Rao Y, Bodmer R, Jan LY and Jan YN (1992). The big brain gene of Drosophila functions to control the number of neuronal precursors in the peripheral nervous system. Development 116:31-40.
4) Rao Y (1994). Conversion of a mesodermalizing molecule, the Xenopus Brachyury gene, into a neuralizing factor. Genes & Dev. 8:939-947.
5) Wu JY, Wen L, Zhang, WJ and Rao Y (1996). The secreted product of Xenopus      lunatic fringe, a vertebrate signaling molecule. Science 273:355-358. 
6) Li HS, Tierney C, Wen L, Wu JY and Rao Y (1997). A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal mesoderm. Development 124:603-615.
7) Li HS, Chen JH, Wu W, Fagaly T, Yuan WL, Zhou L, Dupuis S, Jiang Z, Nash W, Gick C, Ornitz D, Wu JY and Rao Y (1999). Vertebrate Slit, a secreted ligand for the transmembrane protein Roundabout, is a repellent for olfactory bulb axons. Cell 96:807-818.
8) Wu W, Wong K, Chen JH, Jiang ZH, Dupuis S, Wu JY and Rao Y (1999). Directional guidance of neuronal migration in the olfactory system by the secreted protein Slit. Nature 400:331-336.
9) Zhu Y, Li HS, Zhou L, Wu JY and Rao Y (1999). Cellular and molecular guidance of GABAergic neuronal migration from an extra-cortical origin to the neocortex. Neuron 23: 473-485.
10) Yuan W, Zhou L, Chen JH, Wu JY, Rao Y and Ornitz DM (1999). The mouse Slit family: secreted ligands for Robo expressed in patterns that suggest a role in morphogenesis and axon guidance. Dev. Biol. 212:290-306.
11) He M, Wen L, Campbell C, Wu JY and Rao Y (1999). Transcription repression by ET, an ortholog of human Tbx3, a gene involved in ulnar-mammary syndrome. Proc. Natl. Acad. Sci. USA 96:10212-10217. 
12) Chen J, Wu W, Li HS, Fagaly T, Zhou L, Wu JY and Rao Y (2000).Embryonic expression and extracellular secretion of Xenopus Slit. Neuroscience96:231-236.
13) Chen J, Wen L, Dupuis S, Wu JY and Rao Y (2001). The N-terminal leucine rich regions in Slit are sufficient to repel olfactory bulb axons and subventricular zone neurons. J. Neurosci. 21:1548-1556.
14) Hirata T, Fujisawa H, Wu JY and Rao Y (2001). Independence of short-range guidance for olfactory bulb axons from repulsive factor Slit. J. Neurosci. 21: 2373-2379.
15) Wu JY, Feng L, Park H-T, Havlioglu N, Wen L, Tang H, Bacon KB, Jiang Z, Zhang X-C and Rao Y (2001). The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature 410:948-952.
16) Wong K, Ren X-R, Huang Y-Z, Xie Y, Liu G, Saito H, Tang H, Wen L, Brady-Kalnay SM, Mei L, Wu JY, Xiong W-C and Rao Y (2001). Signal transduction in neuronal migration: rof GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 107:209-221.
17) Zhu Y, Yu T, Zhang X-C, Nagasawa T, Wu JY and Rao Y (2002). Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nature Neurosci 5:719-720.
18) Sang Q, Wu JY, Rao Y, Hsueh, Y-P and Tan S-S (2002). Slit promotes branching and elongation of neurites of interneurons but not projection neurons from the developing telencephalon. Mol Cell Neurosci21:250-65.
19) Jin Z, Zhang J, Klar A, Chédotal A, Rao Y, Cepko CL and Bao Z-Z (2003). Irx4-mediated regulation of Slit1 expression contributes to the definition of early axonal paths inside the retina. Development 130: 1037-1048.
20) Yuan W, Rao Y, Babiuk RP, Greer J, Wu JY and Ornitz DM (2003). A genetic model for a central (septum transversum) congenital diaphragmatic hernia in mice lacking Slit3.Proc Natl Acad Sci USA 100:5217-5222.
21) Ward M, McCann C, DeWulf M, Wu JY and Rao Y (2003). Distinguishing between directional guidance and motility regulation in neuronal migration. J Neurosci 23:5170-5177.
22) Liu G and Rao Y (2003). Neuronal migration from the forebrain to the olfactory bulb requires a new attractant persistent in the olfactory bulb. J Neurosci 23:6651– 6659.
23) Wang B, Xiao Y, Ding B-B, Zhang N, Yuan X-B, Gui L, Qian, K-X, Duan S, Chen  Z, Rao Y and Geng J-G (2003). Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell4:19-29.
24) DeBellard ME, Rao Y and Bronner-Fraser M (2003). Dual function of Slit2 in repulsion and enhanced migration of trunk, but not vagal, neural crest cells.J Cell Biol162:269-279.
25) Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien C-B, Wu JW, Urness LD and Li DY (2003). Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 261: 251-267.
26) Guan H, Zu G, Xie Y, Tang H, Johnson M, Xu X, Kevil C, Xiong W-C, Elmets C, Rao Y, Wu JY and Hui Xu H (2003). Neuronal repellent Slit2 inhibits dendritic cell migration and the development of immune responses.  J Immunol171:6519-6526.
27) Zhu Y, Yu T and Rao Y (2004). Developmental regulation of EGL migration through a switch in cellular responsivenessto cerebellar meninges. Dev Biol 267:153-64.
28) Ward ME, Wu JY and Rao Y (2004). Visualization of spatially and temporally regulated N-WASP activity during cytoskeletal reorganization in living cells. Proc Natl Acad Sci USA 101:970-974.
29) Prasad A, Fernandis AZ, Rao Y and Ganju RK (2004). Slit-3 protein-mediated inhibition of CXCR4-induced chemotactic and chemoinvasive signaling pathways in breast cancer cells. J Biol Chem 279:9115-24.
30) Molle KD, Chédotal A, Rao Y, Lumsden A, and Wizenmann A (2004). Local inhibition guides the trajectory of early longitudinal tracts in the developing chick brain. Mech Dev 121:143-156.
31) Kanellis J, Garcia GE, Li P, Parra G, Wilson CB, Rao Y, Han S, Smith CW, Johnson RJ, Wu JY and Feng L (2004). Modulation of inflammation by Slit protein in vivo in experimental crescentic glomerulonephritis. Am J Pathol 165:341-52.
32) Liu G, Beggs H, Jürgensen C, Park HT, Tang H, GorskiJ, JonesKRReichardt LF, Wu JY and Rao Y (2004). Netrin requires the focal adhesion kinase and the Src family kinases to induce axon outgrowth and to attract axons. Nature Neurosci 7:1222-1232.
33) Li W, Lee J, Vikis HG, Lee S-H, Liu G., Aurandt J, Shen T-L, Fearon ER, Guan J-L, Han M, Rao Y, Hong K and Guan KL (2004). Activation of FAK and Src are receptor proximal events required for netrin signaling. Nature Neurosci 7:1213-1221.
34) Jiang H, Guo W, Liang XH and Y Rao (2005). Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3b and its upstream regulators. Cell 120:123-135.
35) Ding YQ, Kim JY, Xu YS, Rao Y and Chen ZF (2005). Ventral migration of early-born neurons requires Dcc and is essential for the projections of primary afferents in the spinal cord. Development 132:2047-2056.
36) Lin L, Rao Y and Isacson O. (2005). Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons. Mol Cell Neurosci 28:547-55.
37) Ward ME, Jiang H and Rao Y (2005). Regulated formation and selection of neuronal processes underlie directional guidance of neuronal migration. Mol Cell Neurosci 30:378-387.
38) Kim TH, Lee HK, Seo IA, Bae HR, Suh DJ, Wu JY, Rao Y, Hwang KG and Park HT (2005) Netrin induces down-regulation of its receptor, Deleted in Colorectal Cancer, through the ubiquitin-proteasome pathway in the embryonic cortical neuron. J Neurochem 95:1-8.
39) Werbowetski-Ogilvie TESadr MSJabado NAngers-Loustau AAgar NYRWu JBjerkvig RAntel JPFaury DRao Y and Del Maestro RF (2006). Inhibition of medulloblastoma cell invasion by Slit. Oncogene 25: 5103-5112.
40) Liu G, Li W, Gao X, Li X, Jurgensen C, Park HT, Shin NY, Yu J, He ML, Hanks SK, Wu JY, Guan KL and Rao Y (2007) p130(CAS) is required for netrin signaling and commissural axon guidance. J Neurosci27:957-68.
41) Guo W, Jiang H, Gray V, Dedhar S and Rao Y (2007). Role of the integrin-linked kinase (ILK) in determining neuronal polarity. Dev Biol 306:457-468.
42) Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, Kim H-G, Fan Y, Xi Q, Li Q-G, Sanlaville D, Andrews W, Sundaresan V, Bi W, Yank J, Giltay JC, Wijmeng C, V.M. de Jong TVM, Feather SA, Woolf AS, Rao Y, Lupsk JR, Eccles MR, Quad BJ, Gusell JF, Morton C and Maas RL (2007). Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 80:616–632.
43) Li X, Gao X, Liu G, Xiong W, Wu JY and Rao Y (2008). Netrin signal transduction and the guanine nucleotide exchange factor DOCK180 in attractive signaling. Nature Neurosci 11:28-35.
44) Zhou C, Rao Y and Rao Y (2008). A subset of octopaminergic neurons are important for Drosophila aggression. Nature Neurosci 11:1059-1061.
45Liu G, Li W, Wang L, Kar A, Guan KL, Rao Y and Wu JY. (2009). DSCAM functions as a netrin receptor in commissural axon pathfinding. Proc Natl Acad Sci USA 106:2951-6.
46) Yuasa-Kawada J, Kinoshita-Kawada M, Rao Y and Wu JY (2009). Deubiquitinating enzyme USP33/VDU1 is required for Slit signaling in inhibiting breast cancer cell migration Proc Natl Acad Sci USA 106:14530-14535.
47) Yuasa-Kawada J, Kinoshita-Kawada M, Wu G, Rao Y and Wu JY (2009). Midline crossing and Slit responsiveness of commissural axons require USP33. Nature Neurosci 12:1087-9.
48) Liu Y, Jiang Y, Si Y, Kim J-Y, Chen Z-F and Rao Y (2011). Molecular regulation of sexual preference revealed by genetic studies of 5-HT in the brain of male mice. Nature 472:95-99.
49) Liu WW, Liang XH, Li YN, Gong JX, Yang Z, Zhang YH, Zhang JX and Rao Y (2011). Social regulation of aggression mediated by pheromonal activation of Or65a olfactory receptor neurons in Drosophila. Nature Neurosci 14:896-902.
50) Masuyama K, Zhang Y, Rao Y and Wang JW (2012). Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J Neurogenet 26:89-102.
51) ZhouC, HuangH, KimSM, LinH, MengX, ChiangA-S, WangJW, Jiao R and Rao Y (2012) Molecular genetic analysis of sexual rejection: roles of octopamine and its receptor OAMB in Drosophila courtship conditioning. J Neurosci32:14281-14287.
52) Zhang SS, Liu Y and Rao Y (2013). Serotonin signaling in the brain of adult female mice is required for sexual preference. Proc Natl Acad Sci USA 110:9968-9973.
53) Gasque G, Conway S, Huang J, Rao Y and Vosshall (2013) Small molecule drug screening in Drosophila identifies the 5HT2A receptor as a feeding modulation target. Scientific Reports 3:2120/doi:10.1038/srep02120.
54) Ishimoto H, Wang Z, Rao Y, Wu C-F and Kitamoto T (2013) A novel role for ecdysone in Drosophila conditioned behavior: linking GPCR-mediated non-canonical steroid action to cAMP signaling in the adult brain. PLoS Genet9:e1003843. doi:10.1371/journal.pgen.1003843.
55) Zhu ZJ, Wang YY, Cao ZJ, Chen BQ, Cai HQ, Wu YH and Rao Y (2016). Cue-independent memory impairment by reactivation-coupled interference in human declarative memory. Cognition 155:125-134.
56) Li Z, Yang H-Y, Wang Y, Zhang M-L, Liu X-R, Xiong Q, Zhang L-N, Jin Y, Mou L-S, Liu Y, Li R-F, Rao Y and Dai Y-F (2017). Generation of tryptophan hydroxylase 2 gene knockout pigs by CRISPR/Cas9-mediated gene targeting. J Biomed Res 31:445-452
57) Qian YJ, Cao Y, Deng BW, Yang G, Li J, Xu R, Zhang D, Huang J and Rao Y (2017). Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of Drosophila. eLifedoi.org/10.7554/eLife.26519.001.
58) Chen BQ, Zhu, ZJ, WangYY, DingXH, GuoXB, He MG, FangW, ZhouSB, ZhouQ, HuangAL, ChenTM, NiDS, GuYP, LiuJN, Lei H and RaoY (2018). Nature vs. nurture in human sociality: multi-level genomic analyses of social conformity. J Hum Genet 63:605-619.
59) Zhang X, Yan HM, Huang ZL and Rao Y (2018). Independence of 5HT involvement in sleep and arousal from thermoregulation in mice. Mol Pharmacol 93:657-664.
60) Zhu ZJ, Chen BQ, Yan HM, Fang W, Zhou Q, Zhou SB, Lei H, Huang AL, Chen TM, Gao TM, Chen L, Chen JY, Ni DS, Gu YP, Liu JN, Zhang WX and Rao Y (2018). Multi-level genomic analyses suggest new genetic variants involved in human memory. Eur J Hum Genet 26:1668-1678.
61) Chen BQ, Zhu ZJ, Na R, Fang W, Zhang W, Zhou Q, Zhou SB, Lei H, Huang AL, Chen TM, Ni DS, Gu YP, Liu JN, Fang F and Rao Y (2018). Genomic analysis of visual cognition: perceptual switching and top-down control. J Neurosci 38:9668-9678.
62) Deng BW, Li Q, Liu XX, Cao Y, Li BF, Qian YJ, Xu R, Mao RB, Zhou EX, Huang J and Rao Y (2019) Chemoconnectomics: mapping chemical transmission in Drosophila. Neuron 101:876-893.
63) Dai XHM, Zhou EX, Yang W, WX Zhang and Rao Y (2019). D-Serine promotes sleep through the NMDA receptor in Drosophila melanogaster.Nature Communications10:1986.
64) Zhu ZJ, Chen BQ, Na R, Fang W, Zhang WX, Zhou Q, Zhou SB, Lei H, Huang AL, Chen TM, Gao TM, Chen L, Ni DS, Gu YP, Liu JN, Chen JY, Rao Y and Fang F (2020). Heritability of human visual contour integration—an integrated genomic study. Eur J Hum Genet 27:1867-1875.
65) Dai XHM, Zhou EX, Yang W, Deng BW, Li Q, Liu XX, Zhang WX and Rao Y (2021). Molecular resolution of a behavioral paradox: sleep and arousal are regulated by distinct acetylcholine receptors in different neurons of Drosophila. Sleep 10, 1093.
65) Dai XHM, Zhou EX, Yang W, Deng BW, Li Q, Liu XX, Zhang WX and Rao Y (2021). Molecular resolution of a behavioral paradox: sleep and arousal are regulated by distinct acetylcholine receptors in different neurons of Drosophila. Sleep 10:1093.
66) Liu YX, Wang TV, Cui YF, Gao SX and Rao Y (2022). Biochemical purification uncovers mammalian sterile 3 (MST3) as a new protein kinase for multifunctional protein kinases AMPK and SIK3. J Biol Chem 298:101929.
67) Liu YX, Wang TV, Cui YF, Li CY, Jiang LF and Rao Y (2022). STE20 phosphorylation of AMPK related kinases revealed by biochemical purifications combined with genetics. J Biol Chem 298:101928
68) Liu ZY, Jiang LF, Li CY, Li CG, Yang JQ, Yu JJ, Mao RB and Rao Y (2022). LKB1 is physiologically required for sleep fromDrosophila melanogaster to Mus musculus.Genetics 221: iyac082.
69) Liu Y, Shan L, Liu T, Li J, Chen YC, Sun CH, Yang CJ, Bian XL, Niu YY, Zhang C, Xi JZ and Rao Y (2023). Molecular and cellular mechanisms of the first social relationship: a conserved role of 5-HT from mice to monkeys, upstream of oxytocin. Neuron 111:1468-1685.
70) Jia X, Zhu J, Bian X, Liu S, Yu S, Liang W, Jiang L, Mao R and Rao Y (2023). Importance of glutamine in synaptic vesicles revealed by functional studies of SLC6A17 and its mutations pathogenic for intellectual disability. eLife 12:RP86972 (bioRxiv 2022.10.25.513688).
71) Li Y, Li CG, Liu YX,Yu JJ, Yang JQ, Cui YF, Wang TV,Li CY,Jiang LF, Song ML and Rao Y(2023). Sleep need, the key regulator of sleep homeostasis, is both indicated and controlled by phosphorylation of threonine 221 in salt inducible kinase 3. Genetics 224:iyad136 (bioRxiv 2021.11.06.467421).
72) Dai X, Yang W, Zhang X, Zhou E, Liu Y, Wang T, Zhang WX, Zhang XX and Rao Y (2023). ppGpp is present in, and functions to regulate sleep of, Drosophila. hLife 1:98-114 (bioRxiv 2022.11.17.516975).
73) Bian XL, Zhu JM, XB, Liang WJ, Yu SH and Rao Y (2023). Suggestion of creatine as a new neurotransmitter by approaches ranging from chemical analysis and biochemistry to electrophysiology. eLife 12:RP89317 (bioRxiv 2022.12.22.521565).
74Mao R, Yu J, Deng B, Dai X, Du Y, Du S, Zhang WX and Rao Y (2023). Conditional chemoconnectomics: a set of libraries targeting all chemical transmission corresponding genes efficiently. eLife 12:RP91927 (bioRxiv2023.09.26.559642).
继续阅读
阅读原文