01 
剑宗气宗之争
《笑傲江湖》中华山派的剑宗和气宗之争,可谓异常激烈。那么问题就来了,既然有剑宗气宗之争,到底应该先练剑,还是先练气呢?引申到软件开发行业有没剑气之争呢?
前面发布很多理论方面的文章,高质量的软件开发,也是存在见效快的套路,针对有一定嵌入式C语言开发基础的,以剑宗之法进行描述,可重点关注if判断和内存管理相关的讲解,抛砖引玉。
02 
文件结构
1、C 程序通常分为两类文件,一种是程序的声明称为头文件,以“.h”为后缀,另一种是程序的实现,以“.c”为后缀,一般每个c文件有个同名的h文件。
2、软件的头文件数目比较多,应将头文件和定义文件分别保存于不同的目录,例如将头文件保存于 include或者inc 目录,将定义文件保存于 source 或src目录;如果某些头文件是私有的,它不会被用户的程序直接引用,则没有必要公开其“声明”。为了加强信息隐藏,这些私有的头文件可以和定义文件存放于同一个目录,即私有的h文件放在src目录。
3、在文件头添加版权和版本的声明等信息,主要包括版权和功能,以及修改记录,必要时可以为整个功能文件夹单独新建readme说明文档。
4、为了防止头文件被重复引用,必须用 ifndef/define/endif 结构产生预处理块。
5、头文件中只存放“声明”而不存放“定义”,更别提放变量,这是严重的错误。
6、用 #include <filename.h> 格式来引用标准库的头文件,用 #include “filename.h” 格式来引用非标准库的头文件(编译器将从用户的工作目录开始搜索)。
7、文件可按层或者功能组件划分不同的文件夹,便于其他人阅读。
03 
程序版式
版式虽然不会影响程序的功能,但会影响可读性,程序的风格统一则是赏心悦目。
代码排版在编码时确实很难把握,但可以编码完成后统一用工具格式化,不管编码使用Keil/MDK、Qt等集成工具,或者纯粹的代码编辑工具Source Insight,一般都支持自定义运行可执行文件,如Astyle。可以客制化新菜单,一键执行Astyle,将代码一键格式化,排版统一、层次分明。
Astyle官网 http://astyle.sourceforge.net/  按要求下载安装,只需要AStyle.exe即可。关于其使用和参数,可以再进入Documentation。对代码基本风格,{}如何对齐、是否换行,switch-case如何排版,tab键占位宽度,运算符或变量前后的空格等等,基本上代码排版涉及的方方面面都有参数说明。个人选择的编码参数是
--style=allman -S -U -t -n -K -p -s4 -j -q -Y -xW -xV fileName
效果如下
//微信公众号:嵌入式系统intFoo(bool isBar)
{
if
 (isBar)
    {
        bar();
return1
;
    }
else
    {
return0
;
    }
}
关于注释,重要函数或段落必不可少,修改代码同时修改相应的注释,以保证注释与代码的一致性。
04 
命名规则
比较著名的命名规则当推 Microsoft 公司的“匈牙利”法,该命名规则的主要思想是“在变量和函数名中加入前缀以增进人们对程序的理解”。例如所有的字符变量均以 ch 为前缀,若是指针变量则追加前缀 p。但没有一种命名规则可以让所有的程序员满意,制定一种令大多数项目成员满意的命名规则,重点是在整个团队和项目中贯彻实施。
事实上开发大多数基于SDK,一般底层命名规则尽量与SDK风格保持一致,至于上层就按团队标准,个人比较倾向全部小写字母,用下划线分割的风格,例如 set_apn、timer_start。
不要出现标识符完全相同的局部变量和全局变量,尽管两者的作用域不同而不会发生语法错误,但会使人误解,全局变量也不要过于简短。
变量的名字应当使用“名词”或者“形容词+名词”,函数的名字应当使用“动词”或者“动词+名词”,用正确的反义词组命名具有互斥意义的变量或相反动作的函数等。
05 
基本语句
表达式和语句都属于C 语法基础,看似简单,但使用时隐患比较多,提供一些建议。

5.1 if

if 语句是 C 语言中最简单、最常用的语句,然而很多程序员却用隐含错误的方式,仅以不同类型的变量与零值比较为例,展开讨论。
5.1.1 布尔变量与零值比较
不可将布尔变量直接与 TRUE、FALSE 或者 1、0 进行比较。根据布尔类型的语义,零值为“假”(记为 FALSE),任何非零值都是“真”(记为TRUE)。TRUE 的值究竟是什么并没有统一的标准。
假设布尔变量名字为 flag,它与零值比较的标准 if 语句如下:
//微信公众号:嵌入式系统if
 (flag)   
// 表示 flag 为真 if
 (!flag)   
// 表示 flag 为假 
其它的用法都属于不良风格,例如:
//错误范例if
 (flag == TRUE) 
if
 (flag == 
1
 ) 
if
 (flag == FALSE) 
if
 (flag == 
0
2、整型变量与零值比较
整型变量用“==”或“!=”直接与 0 比较,假设整型变量的名字为 value,它与零值比较的标准 if 语句如下:
if
 (value == 
0
if
 (value != 
0
不可模仿布尔变量的风格而写成
//错误范例if
 (value)   
// 会让人误解 value 是布尔变量 if
 (!value) 
3、 浮点变量与零值比较
不可将浮点变量用“==”或“!=”与任何数字比较,无论是 float 还是 double 类型的变量,都有精度限制。不能将浮点变量用“==”或“!=”与数字比较,应该设法转化成“>=”或“<=”形式。假设浮点变量的名字为 x,应当将
if
 (x == 
0.0
// 隐含错误的比较,错误
转化为
constfloat
 EPSINON = 
0.00001if
 ((x>=-EPSINON) && (x<=EPSINON)) 
//其中 EPSINON 是允许的误差(即精度),即x无限趋近于0.0
4、指针变量与零值比较
指针变量用“==”或“!=”与 NULL 比较, 指针变量的零值是“空”(记为 NULL),尽管 NULL 的值与 0 相同,但是两者意义不同。假设指针变量的名字为 p,它与零值比较的标准 if 语句如下:
if
 (p == 
NULL
// p 与 NULL 显式比较,强调 p 是指针变量 if
 (p != 
NULL
不要写成
if
 (p == 
0
)  
// 容易让人误解 p 是整型变量 if
 (p != 
0
if
 (p)    
// 容易让人误解 p 是布尔变量 if
 (!p) 

5.2 for

在多重循环中,如果有可能,应当将最长的循环放在最内层,最短的循环放在最外层,以减少 CPU 切换循环层的次数。
//不良范例for
 (row=
0
; row<
100
; row++) 
for
 ( col=
0
; col<
5
; col++ ) 
 { 
  sum = sum + a[row][col]; 
 } 
//微信公众号:嵌入式系统 较高效率for
 (col=
0
; col<
5
; col++ ) 
for
 (row=
0
; row<
100
; row++) 
 { 
   sum = sum + a[row][col]; 
 } 

5.3 switch

switch 是多分支选择语句,而 if 语句只有两个分支可供选择;虽然可以用嵌套的if 语句来实现多分支选择,但那样的程序冗长难读。这是 switch 语句存在的理由。
switch-case 即使不需要 default 处理,也应该保留语句 default : break; 这样做并非多此一举,而是为了防止别人误以为你忘了 default 处理。确实不需要break的case,务必加上注释标明。

5.4 goto

很多人建议禁止使用 goto 语句,但实事求是地说,错误是程序员自己造成的,不是 goto 的过错。goto 语句至少有一处可显神通,它能从多重循环体中一下子跳到外面,特殊场景下可以使用,在很多if嵌套的场景,比如都有同样的错误处理,或者成对操作的文件开关,或者内存申请释放,就比较适合goto统一处理。
//微信公众号:嵌入式系统//代码只是表意,可能无法编译#include<stdlib.h>voidtest(void)
{
char
 *p1,*p2;
    p1=(
char
 *)
malloc
(
100
);
    p1=(
char
 *)
malloc
(
200
);
if
(
0
)
    {
//do somethinggotoexit
;
    }
elseif
(
0
)
    {
//do somethinggotoexit
;
    }
//do something//...exit
:
free
(p1);
free
(p2);
}
intmain()
{
    goto_test();
return0
;
}
对于内存申请释放、文件打开关闭这种成对操作,或者各种异常处理的统一支持场景,就比较适合goto。类似的还有do-while(0)这种语句。
关于运算优先级,熟记运算符优先级是比较困难的,如果代码行中的运算符比较多,为了防止产生歧义并提高可读性,全部加括号明确表达式的操作顺序,虽然愚笨但是可靠
06 
常量
常量是一种标识符,它的值在运行期间恒定不变。C 语言用 #define 来定义常量(称为宏常量),但用 const 来定义常量(称为 const 常量)其实更佳。
#define MAX 100 constfloat
 PI = 
3.14159
const 常量有数据类型,而宏常量没有数据类型。编译器可以对前者进行类型安全检查,而对后者只进行字符替换,没有类型安全检查,并且在字符替换可能会产生意料不到的错误,所以复杂参数宏必须为每个参数加上()限制。
但也有特例
constint
 SIZE = 
100
intarray
[SIZE]; 
// 有的编译器认为是错误,这就必须用define了
需要对外公开的常量放在头文件中,不需要对外公开的常量放在定义文件的头部。为便于管理,可以把不同模块的常量集中存放在一个公共的头文件中。
07 
函数
函数设计的细微缺点很容易导致该函数被错用,函数接口的两个要素是参数和返回值,C 语言中函数的参数和返回值的传递方式有值传递(pass by value)和指针传递(pass by pointer)两种。

7.1参数的规则

参数的书写要完整,不要贪图省事只写参数的类型而省略参数名字,如果函数没有参数,则用 void 填充。
voidset_size(int width, int height)
// 良好的风格 voidset_size(intint)
// 不良的风格 intget_size(void)
// 良好的风格 intget_size()
// 不良的风格 
参数命名要恰当,顺序要合理。例如字符串拷贝函数
char *strcpy(char* dest, constchar *src)
;
从名字上就可以看出应该把 src 拷贝到 dest。还有一个问题,两个参数哪个该在前哪个该在后?参数的顺序要遵循程序员的习惯。一般地,应将目的参数放在前面,源参数放在后面。
这里也说明下const的意义,如果参数仅作输入用,则应在类型前加 const,以防止在函数体内被意外修改。
避免函数有太多的参数,参数个数尽量控制在 5 个以内,如果参数太多,在使用时容易将参数类型或顺序搞错,可以定为结构体指针,但尽量带上参数注释。
除了printf、sprintf标准库或基于这类的日志输出接口,尽量不要使用类型和数目不确定的参数。

7.2 返回值的规则

不要省略返回值的类型,默认不加类型说明的函数一律自动按整型处理。为了避免混乱,如果函数没有返回值,应声明为 void 类型。
不要将正常值和错误标志混在一起返回。正常值用输出参数获得,而错误标志用 return 语句返回。

7.3 函数内部实现的规则

不同功能的函数其内部实现各不相同,看起来似乎无法就“内部实现”达成一致的观点。但根据经验,我们可以在函数体的“入口处”和“出口处”从严把关,从而提高函数的质量。
在函数体的“入口处”,对参数的有效性进行检查,很多程序错误是由非法参数引起的,我们应该充分理解并正确使用“断言”(assert)来防止此类错误。
在函数体的“出口处”,对 return 语句的正确性和效率进行检查。如果函数有返回值,那么函数的“出口处”是 return 语句。调用处应该尽量关注返回值,对异常进行处理
关于return的值,不可返回指向“栈内存”的“指针,该内存在函数体结束时被自动销毁。例如
char
 * 
Func(void)
char
 str[] = “hello world”; 
// str 的内存位于栈上 
  … 
return
 str; 
// 将导致错误 
 } 
尽量避免函数带有“记忆”功能,相同的输入应当产生相同的输出。带有“记忆”功能的函数,其行为可能是不可预测的,因为它的行为可能取决于某种“记忆状态”。这样的函数既不易理解又不利于测试和维护。在 C语言中,函数 的 static 局部变量是函数的“记忆”存储器。建议尽量少用 static 局部变量,除非必需。

7.4 断言

程序一般分为 Debug 版本和 Release 版本,Debug 版本用于内部调试,Release 版本发行给用户使用。断言 assert 是仅在 Debug 版本起作用的宏,它用于检查“不应该”发生的情况。在运行过程中,如果 assert 的参数为假,那么程序就会中止。
void
 *
memcpy(void *pvTo, constvoid *pvFrom, size_t size)
 assert((pvTo != 
NULL
) && (pvFrom != 
NULL
)); 
// 【使用断言】 
 byte *pbTo = (byte *) pvTo; 
// 防止改变 pvTo 的地址 
 byte *pbFrom = (byte *) pvFrom; 
// 防止改变 pvFrom 的地址 while
(size -- > 
0
 ) 
 *pbTo ++ = *pbFrom ++ ; 
return
 pvTo; 
}
assert 不应该产生任何副作用。所以 assert 不是函数,而是宏。可以把assert 看成一个在任何系统状态下都可以安全使用的无害测试手段。如果程序在 assert处终止了,并不是说含有该 assert 的函数有错误,而是调用者出了差错,assert 有助于找到发生错误的原因。
软件有必要进行防错设计,如果“不可能发生”的事情的确发生了,则要使用断言进行报警。

8 内存管理

C语言的内存管理既是它的优势,也是劣势。理解它的原理了才能更好的管理内存。

8.1 内存分配方式

内存分配方式有三种:
1、从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static 变量。
2、在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
3、从堆上分配,亦称动态内存分配。程序在运行的时候用 malloc 或 new 申请任意多少的内存,程序员自己负责在何时用 free 或 delete 释放内存。动态内存的生存期由我们决定,使用非常灵活,但风险也大。

8.2 内存错误及其对策

发生内存错误是件非常麻烦的事情。编译器不能自动发现这些错误,通常是在程序运行时才能捕捉到,而这些错误大多没有明显的症状,时隐时现,增加了改错的难度。常见的内存错误及其对策如下:
1、内存分配未成功,却使用了它
编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查指针是否为 NULL。如果指针 p 是函数的参数,可在函数的入口处用 assert(p!=NULL)进行检查,或者用 if(p==NULL) 或 if(p!=NULL)进行防错处理。
2、内存分配虽然成功,但是尚未初始化就引用它
犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值错误。内存的缺省初值究竟是什么并没有统一的标准(尽管有些时候为零值),为了安全,对分配的内存都进行清零。
3、内存分配成功并且已经初始化,但操作越过了内存的边界
数组使用时经常会发生下标“多 1”或“少 1”的操作。特别是在 for 循环语句中,循环次数很容易搞错,导致数组操作越界。
4、忘记释放内存,造成内存泄露
含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,运行正常,但随着运行时间加长,程序突然死掉,内存耗尽。动态内存的申请与释放必须配对,程序中 malloc 与 free 的成对使用。
5、已经释放的内存却继续使用它
程序中的调用关系过于复杂,逻辑顺序错误,或者使用了指向“栈内存”的“临时指针,使用 free 或 delete 释放了内存后,务必将指针设置为 NULL,使用前判断是否为NULL。
关于指针的使用建议,用 malloc  申请内存之后,应该立即检查指针值是否为 NULL,非NULL的赋初值;使用结束后用 free 释放,且将指针设置为 NULL,防止误用“野指针”。

8.3 指针与数组的对比

C 程序中指针和数组在不少地方可以相互替换着用,让人产生一种错觉,以 为两者是等价的。
数组要么在静态存储区被创建(如全局数组),要么在栈上被创建。数组名对应着(而不是指向)一块内存,其地址与容量在生命期内保持不变,只有数组的内容可以改变。
指针可以随时指向任意类型的内存块,它的特征是“可变”,所以我们常用指针来操作动态内存。指针远比数组灵活,但也更危险。
下面以字符串为例比较指针与数组的特性。
1、修改内容
字符数组 a 的容量是 6 个字符,其内容为 hello\0。a 的内容可以改变,如 a[0]= ‘X’。指针 p 指向常量字符串“world”(位于静态存储区,内容为 world\0),常量字符串的内容是不可以被修改的。从语法上看,编译器并不觉得语句 p[0]= ‘X’有什么不妥,但是该语句企图修改常量字符串的内容而导致运行错误。
char
 a[] = “hello”; 
a[
0
] = ‘X’; 
cout
 << a << 
endl
char
 *p = “world”; 
// 注意 p 指向常量字符串 
p[
0
] = ‘X’; 
// 编译器不能发现该错误 cout
 << p << 
endl
;
2、 内容复制与比较
不能对数组名进行直接复制与比较,若想把数组 a 的内容复制给数组 b,不能用语句 b = a ,否则将产生编译错误。应该用标准库函数 strcpy 进行复制。同理,比较 b 和 a 的内容是否相同,不能用 if(b == a) 来判断,应该用标准库函数 strcmp进行比较。
语句 p = a 并不能把 a 的内容复制指针 p,而是把 a 的地址赋给了 p。要想复制 a的内容,可以先用库函数 malloc 为 p 申请一块容量为 strlen(a)+1 个字符的内存,再用 strcpy 进行字符串复制。同理,语句 if(p==a) 比较的不是内容而是地址,应该用库函数 strcmp 来比较。
// 数组 char
 a[] = 
"hello"
char
 b[
10
]; 
strcpy
(b, a); 
// 不能用 b = a; if
(
strcmp
(b, a) == 
0
 )  
// 不能用 if ( b ==  a) // 指针int
 len = 
strlen
(a); 
char
 *p = (
char
 *)
malloc
(
sizeof
(
char
)*(len+
1
)); 
strcpy
(p,a); 
// 不要用 p = a; if
(
strcmp
(p, a) == 
0
// 不要用 if (p == a) 
3、计算内存容量
用运算符 sizeof 可以计算出数组的容量(字节数)。sizeof(a)的值是 12(注意别忘了’\0’)。指针 p 指向 a,但是 sizeof(p)的值却是 4。这是因为sizeof(p)得到的是一个指针变量的字节数,相当于 sizeof(char*),而不是 p 所指的内存容量。/C 语言没有办法知道指针所指的内存容量,只能在申请内存时记住它。
char
 a[] = 
"hello world"
char
 *p = a; 
cout
<< 
sizeof
(a) << 
endl
// 12 字节 cout
<< 
sizeof
(p) << 
endl
// 4 字节 
当数组作为函数的参数进行传递时,该数组自动退化为同类型的指针。不论数组 a 的容量是多少,sizeof(a)始终等于 sizeof(char *)。
voidFunc(char a[100])
cout
<< 
sizeof
(a) << 
endl
// 4 字节而不是 100 字节 
4、指针参数是如何传递内存
如果函数的参数是一个指针,不要指望用该指针去申请动态内存。
voidget_memory(char *p, int num)
 p = (
char
 *)
malloc
(
sizeof
(
char
) * num); 
voidtest(void)
char
 *str = 
NULL
 get_memory(str, 
100
); 
// str 仍然为 NULL strcpy
(str, 
"hello"
); 
// 运行错误 
test 函数的get_memory(str, 100) 并没有使 str 获得期望的内存,str 依旧是 NULL,为什么?
问题出在函数 get_memory,编译器总是要为函数的每个参数制作临时副本,指针参数 p 的副本是 _p,编译器使 _p = p。如果函数体内的程序修改了_p 的内容,就导致参数 p 的内容作相应的修改。这就是指针可以用作输出参数的原因。而范例中_p 申请了新的内存,只是把_p 所指的内存地址改变了,但是 p 丝毫未变。所以函数 get_memory并不能输出任何东西。事实上,每执行一次 get_memory就会泄露一块内存,因为没有用free 释放内存。
如果非得要用指针参数去申请内存,那么应该改用“指向指针的指针”,正确范例如下:
voidget_memory2(char **p, int num)
 *p = (
char
 *)
malloc
(
sizeof
(
char
) * num); 
}
voidtest2(void)
char
 *str = 
NULL
 get_memory2(&str, 
100
); 
// 注意参数是 &str,而不是 str strcpy
(str, 
"hello"
); 
free
(str); 
由于“指向指针的指针”这个概念不容易理解,可以用函数返回值来传递动态内存,这种方法更加简单。
char
 *
get_memory3(int num)
char
 *p = (
char
 *)
malloc
(
sizeof
(
char
) * num); 
return
 p; 
}
voidtest3(void)
char
 *str = 
NULL
 str = get_memory3(
100
); 
//建议增加str指针是否为NULL判断,并清零内容strcpy
(str, 
"hello"
); 
free
(str); 
用函数返回值来传递动态内存这种方法虽然好用,但是常常有人把 return 语句用错,不要用 return 语句返回指向“栈内存”的指针,因为该内存在函数结束时自动消亡,错误范例如下:
//错误范例char
 *
get_string(void)
char
 p[] = 
"hello world"
return
 p; 
// 编译器将提出警告 
voidtest4(void)
char
 *str = 
NULL
 str = get_string(); 
// str 的内容是随机垃圾
执行str = get_string()后 str 不再是 NULL 指针,但是 str 的内容不是“hello world”而是垃圾。
char
 *
get_string2(void)
char
 *p = 
"hello world"
return
 p; 
voidtest5(void)
char
 *str = 
NULL
 str = get_string2(); 
函数 test5 运行虽然不会出错,但是函数 get_string2的设计概念却是错误的。因为 get_string2内的“hello world”是常量字符串,位于静态存储区,它在程序生命期内恒定不变。无论什么时候调用 get_string2,它返回的始终是同一个“只读”的内存块,也就是test5是无法修改str的。
5、 free 把指针怎么了
free 只是把指针所指的内存给释放掉,但并没有把指针本身干掉;指针 p 被 free 以后其地址仍然不变(非 NULL),只是该地址对应的内存是垃圾,p 成了“野指针”。如果此时不把 p 设置为 NULL,会让人误以为 p 是个合法的指针。
如果程序比较长,我们有时记不住 p 所指的内存是否已经被释放,在继续使用 p 之前,通常会用语句 if (p != NULL)进行防错处理。很遗憾,此时 if 语句起不到防错作用,此时 p 不是 NULL 指针,但它也不指向合法的内存块。
char
 *p = (
char
 *) 
malloc
(
100
); 
strcpy
(p, “hello”); 
free
(p); 
// p 所指的内存被释放,但是 p 所指的地址仍然不变 if
(p != 
NULL
// 没有起到防错作用 
strcpy
(p, “world”); 
// 出错 
6、动态内存会被自动释放吗
函数体内的局部变量在函数结束时自动消亡。
voidfunc(void)
char
 *p = (
char
 *) 
malloc
(
100
); 
// 动态内存会自动释放吗? 
}
但是,变量p 是局部的指针变量,它消亡的时候并不会让它所指的动态内存一起完蛋。发现指针有一些“似是而非”的特征:
(1)指针消亡了,并不表示它所指的内存会被自动释放。
(2)内存被释放了,并不表示指针会消亡或者成了 NULL 指针。
7、杜绝“野指针”
“野指针”不是 NULL 指针,是指向“垃圾”内存的指针。人们一般不会错用 NULL指针,因为用 if 语句很容易判断;但是“野指针”是很危险的,if 语句对它不起作用。“野指针”的成因主要有三种:
(1)指针变量没有被初始化。任何指针变量刚被创建时不会自动成为 NULL 指针,它的缺省值是随机的,所以,指针变量在创建的同时应当被初始化。
(2)指针 p 被 free 或者 delete 之后,没有置为 NULL,让人误以为 p 是个合法的指针。
(3)指针操作超越了变量的作用范围。这种情况让人防不胜防。
8、内存耗尽怎么办
如果在申请动态内存时找不到足够大的内存块,malloc 将返回 NULL 指针, 宣告内存申请失败。判断指针是否为 NULL,如果是则马上用 return 语句终止本函数,或者用 exit(1)终止整个程序的运行。如果发生“内存耗尽”,一般说来应用程序已经无药可救,嵌入式设备只能重启了。
9、心得体会
很少有人能拍拍胸脯说通晓指针与内存管理,越是怕指针,就越要使用指针。不会正确使用指针,肯定算不上是合格的嵌入式程序员。
-END-

往期推荐:点击图片即可跳转阅读
波士顿动力机器人双手会搬砖了!能抓能抬,还能搭桥扔工具包。
在航天院做程序员,是一种什么体验?
什么,这个 C 语言大坑你没见过?
继续阅读
阅读原文