READING
导读
1999年求是奖颁奖会在复旦大学举办,求是科技基金会执委、顾问陈省身先生作了专题演讲"什么是几何学”。陈省身先生(1911年10月28日-2004年12月3日)是20世纪世界最重要的微分几何学家之一、也是最有影响力的数学家之一,曾长期担任加州大学伯克利分校、芝加哥大学数学教授。在即将迎来陈省身先生诞辰110周年纪念之际,《赛先生》今日分享这一高水平、有深度的演讲,以飨读者。本文源自求是科技基金会官网
陈省身教授(左)与周光召教授(右)在介绍会中谈笑甚欢,图源:求是科技基金会官网。
演讲 | 陈省身
今天授奖的仪式很隆重,听了许多人的演讲,我非常感动。有机会在此演讲,自己觉得非常之荣幸,也非常之高兴。我想从现在起,我们就像平常上课一样,不怎么严肃,随便一点。我带了一些材料,非常遗憾的是没法投影。不投影也可以,我没有什么准备。
大家希望我讲一点几何学,题目是《什么是几何学》。我虽然搞了几十年的几何工作,但是很抱歉的一点是,当你们听完演讲后,不会得到很简单的答案,因为这是一门广泛而伟大的学问。在最近几千年来,几何学有非常重要的发展,跟许多其它的科学不但有关系、有作用,而且是基本的因素。
讲到几何学,我们第一个想到的是欧几里德。除了基督教的《圣经》之外,欧几里德的《几何原本》在世界出版物中大概是销售最多的一本书了。这本书在中国有翻译,译者是徐光启与利玛窦。徐光启(1562~1633)是中国了不得的学问家,利玛窦(M.Ricci)是到中国来的意大利传教士。他们只翻译了六章,中文本是在1607年出版的。
我们现在通用的许多名词,例如并行线、三角形、圆周等这类名词,我想都是徐光启翻译的。当时没有把全书翻译完,差不多只翻译了半本,另外还有半本是李善兰和伟烈亚力翻译的。伟烈亚力(A.Wylie)是英国传教士。很高兴的是,李善兰是浙江海宁人。海宁是嘉兴府的一县,我是嘉兴人,所以我们是同乡(掌声)。对了,查济民先生也是海宁人(掌声)
左起,查济民董事长、周光召教授与杨振宁教授于介绍会中,图源:求是科技基金会官网。
推动几何学第二个重要的、历史性发展的人是Descarte(1596~1650),中国人翻译称为笛卡儿。他是法国哲学家,不是专门研究数学的。他用坐标的方法,把几何变成了代数。当时没有分析或者无穷的观念。所以他就变成代数。我想笛卡儿当时不见得觉得他这贡献是很伟大的,所以他的几何论文是他的哲学引里面最后的一个附录,附属于他的哲学的。
这个思想当然在几何上是革命性的,因为当把几何的现象用坐标表示出来时,就变成了代数现象。所以你要证明说一条直线是不是经过一个点,你只要证明某个数是不是等于零就行了。这样就变成了一个简单一点的代数问题。当然并不是任何的几何问题都要变成代数问题,有时候变为代数问题后原来的问题更加复杂了。但这个关系是基本性的。
笛卡儿发现的坐标系,我们大概在中学念解析几何都学到。有一点是这样的(我的图可惜现在没法投影出来),给定一条直线,直线上有一个原点,其它的点由它的距离x来确定,然后经过x沿一定的方向画一条直线,那么y坐标就是在那条线从x轴上这个点所经的距离,这就是笛卡儿的坐标,英文叫Cartesian,坐标。它的两条线不一定垂直。不知道哪位先生写教科书时把两条线写成垂直了,因此x坐标与y坐标对称了。笛卡儿的两个坐标不是对称的,这是他非常重要的观念,我们现在就叫纤维丛。

这些跟y坐标平行的直线都是纤维,是另外的一个空间。原因是这样的:你把它这样改了之后,那条直线就不一定要直线,可以是任何另外一个空间了。这样可以确定空间里点用另外一组坐标来表示。所以有时候科学或数学不一定完全进步了,有时候反而退步了
(笑声)。笛卡儿用了这个坐标,就发现,我们不一定要用Cartesian坐标,可以用其它坐标,比如极坐标。

平面上确定一个点,称为原点,过这点画一条射线,称为原轴。这样平面上的点,一个坐标是这点与原点的距离,另外一个是角度,是这点与原点的连线与原轴的相交的角度,这就是极坐标。因此极坐标的两个坐标,一个是正数或零,另外一个是从零到360度的角度。
当然我们都知道,还可以有许多其它的坐标,只要用数就可以确定坐标。因此,后来大家弄多了的话,就对几何作出了另外一个革命性的贡献,就是说,坐标不一定要有意义。只要每级数能定义一个点,我们就把它叫坐标。从而几何性质就变成坐标的一个代数性质,或者说分析的性质。这样就把几何数量化了,几何就变成形式化的东西了。
这个影响非常之大,当然这个影响也不大容易被接受,比如爱因斯坦。爱因斯坦发现他的相对论,特殊相对论是在1908年,而广义相对论是在1915年,前后差了7年。爱因斯坦说,为什么需要7年我才能从特殊相对论过渡到广义相对论呢?他说因为我觉得坐标都应该有几何或物理意义。爱因斯坦是一个对学问非常严谨的人,他觉得没有意义的坐标不大容易被接受,所以耽误了他很多年,他才不能不接受,就是因为空间的概念被推广了。
我忘掉了一段。我现在是讲书,讲书忘掉了补充一下是无所谓的,讲错了也不要紧(笑声)。同样我回头再讲一点欧几里德。那时的欧几里德的《几何原本》并不仅仅是几何,而是整个数学。因为那时候的数学还没有发现微积分,无穷的观念虽然已经有了,不过不怎么普遍。
我再说一点,就很可惜的是欧几里德的身世我们知道得很少,只知道他大概生活在纪元前三百年左右。他是亚历山大学校的几何教授,他的《几何原本》大概是当时的一个课本。亚历山大大学是希腊文化最后集中的一个地方。因为亚历山大自己到过亚历山大,因此就建立了当时北非的大城,靠在地中海。但是他远在到亚洲之后,我们知道他很快就死了。
之后,他的大将托勒密(PtolemySoter)管理当时的埃及区域。托勒密很重视学问,就成立了一个大学。这个大学就在他的王宫旁边,是当时全世界伟大的大学,设备非常好,有许多书。很可惜由于宗教的原因,由于众多的原因,现在这个学校被完全毁掉了。当时的基督教就不喜欢这个学校,已经开始被毁了,然后回教人占领了北非之后,就大规模地破坏,把图书馆的书都拿出来烧掉。所以现在这个学校完全不存在了。
几何是很重要的,因为大家觉得几何就是数学。比方说,现在还有这一印象,法国的科学院,它的数学组叫做几何组。对于法国来讲,搞数学的不称数学家,而叫几何学家,这都是受当时几何的影响。当时的几何比现在的几何的范围来得广。不过从另一方面讲现在的范围更广了,就是我刚才讲到的坐标不一定有意义。一个空间可以有好几种坐标,那么怎样描述空间呢?这就显得很困难啦,因为空间到底有什么样的几何性质,这也是一个大问题。
高斯与黎曼建立和发展了这方面的理论。高斯是德国人,我想他是近代数学最伟大的一个数学家。黎曼实际上是他的继承人,也是德国教学家。他们都是哥廷根大学的教授。可惜的是黎曼活着时身体不好,有肺结核病,四十岁就死了。他们的发展有一个主要目的,就是要发展一个空间,它的坐标是局部的。空间里只有坐标,反正你不能讲坐标是什么,只知道坐标代表一个点,所以只是一小块里的点可以用坐标表示。因此虽然点的性质可以用解析关系来表示,但是如何研究空间这就成了大问题。
在这个之前,我刚才又忘了一个,就是基础的数学是欧几里德的书,但是欧几里德的书出了一个毛病。因为欧几里德用公理经过逻辑的手段得到结论。例如说,三角形三角之和一定等于180度,这是了不得的结果。欧几里德可以用公理几步就把它证明了,是一个结论。这个比现代的科学简单得多了。

我们刚才听了很多话,科学家做科学研究,第一样就是跟政府要钱,跟社会要钱,说你给了我钱,我才能做实验。当然实验是科学的基础。但是这样一来就会有许多的社会问题和政治问题。
欧几里德说,你给我一张纸,我只要写几下,就证明了这个结果。不但如此,我是搞数学的,我说数学理论还有优点,数学的理论可以预测实验的结果。不用实验,用数学可以得到结论,然后用实验去证明。当然实验有时的证明不对,也许你的理论就不对了,那当然也有这个毛病。
欧几里德的公理是非常明显的,但是他有一个有名的公理叫第五公设出了问题。这个第五公设讲起来比较长,但是简单地说,就是有一条直线与线外一点,经过这点只有一条直线与这条已给的直线平行。这个你要随便画图的话,觉得相当可信。可是你要严格追问的话,这个公理不大明显,至少不如其它公理这样明显。所以这个第五公设对当时数学界喜欢思想的人是个大问题。
当时最理想的情形是:第五公设可以用其它的公理推得,变成一个所谓的定理。那就简单化了,并且可做这个实验。我们搞数学的人有一个简单的方法,就是我要证明这个公理,我先假定这个公理不对,看是不是可以得到矛盾。如果得到矛盾,就证明它是对的了。这就是所谓间接证明法。有人就想用这个方法证明第五公设,但是都失败了。
我们现在知道这个第五公设并不一定对,经过一点的并行线可以有无数条,这就是非欧几何的发现。非欧几何的发现,它的社会意义很大,因为它表示空间不一定只有一个。西洋的社会相信上帝只有一个,怎么会有两个空间,或者很多个空间呢?当时这是个很严重的社会问题。
不止是社会问题,同时也是哲学问题。像德国大哲学家康德,他就觉得只能有欧氏几何,不能有非欧几何。所以当时这是一个很大的争论。非欧几何的发现一个是J.Bolyai,匈牙利人,在1832年;一个是Lobachevski,俄国人,在1847年。
不过我刚才讲到大数学家高斯,我们从他的种种著作中知道他完全清楚,但他没有把它发表成一个结论,因为发表这样一个结论,是可以遭到别人反对的。因此就有这么一个争论。等到意大利的几何学家Beltrami,他在欧几里德的三维空间里造了一个曲面,曲面上的几何就是非欧几何,这对于消除大家的怀疑是很有利的工具。
因为上述结果是说,假定有一个三维的欧几里德空间,就可以造出一个非欧几何的空间来,所以在欧几里德的几何中亦有非欧几何。你假定欧几里德几何,你就得接受非欧几何,因此大家对非欧几何的怀疑有种种的方法慢慢给予解除。
我刚才讲到高斯与黎曼把坐标一般化,使坐标不一定有意义,这对几何学产生的问题可大了。因为空间就变成一块一块拼起来的东西。那想怎么去研究它呢?怎么知道空间有不同的性质呢?甚至怎么区别不同的空间?
我这里有几个图,画了几个不同的空间,可惜我没法把它投影出来。不过,总而言之空间的个数是无穷的,有很多很多不同的空间。现在对于研究几何的人就产生一个基本问题,你怎样去研究它。这样一个基本的学问现在就叫Topology,拓朴学。
它是研究整个空间的性质,如什么叫空间的连续性,怎样的两个空间在某个意义上是相同的,等等。这样就发展了许多许多的工具。这个问题也讨论了。黎曼生活在1826~1866年。德国的教学制度在博士毕业之后,为了有资格在大学教书,一定要做一个公开演讲,这个公开的演讲就是所谓的Habilitationschrift。黎曼在1854年到哥廷根大学去做教授,做了一个演讲,这个在几何上是非常基本的文献,就讨论了这些问题。
如何研究这种空间呢?要研究这种空间,如果你只知道空间是随便一块块拼起来的话,就没有什么可以研究的了。于是你往往需要一个度量,至少你知道什么叫两点之间的距离,你怎么去处理它呢?就需要解析的工具。往往你把距离表为一个积分,用积分代表距离。
黎曼的这篇1854年的论文,是非常重要的,也是几何里的一个基本文献,相当一个国家的宪法似的。爱因斯坦不知道这篇论文,花了七年的时间想方设法也要发展同样的观念,所以爱因斯坦浪费了许多时间。黎曼这篇论文引进的距离这个观念,是一个积分,在数学界一百多年来有了很大的发展。
第一个重要的发展是黎曼几何应用到广义相对论,是相对论的一个基本的数学基础。现在大家要念数学,尤其要念几何学的话,黎曼几何是一个最主要的部分,这个也是从黎曼的演讲开始的。现在黎曼几何的结果多得不得了,不但是几何的基础,可能也是整个数学发展的基础。
1999年求是“杰出青年学者奖“得奖人于介绍会会场外合照,图源:求是科技基金会官网。
我刚才提到一百多年来的发展。所谓的黎曼几何实际上是黎曼的论文的一个简单的情形,是某个情形。黎曼原来的意思,广义下的意思,有个人做了重要的工作,是一个德国人Finsler。所以这部分的几何就叫Finsler几何。他在1918年在哥廷根大学写了一篇博士论文,就讲这个几何。这个几何后来发展不大多,因为大家不知道怎么办。如果这个度量的积分广了一点,对应的数学就变复杂了,不像黎曼的某个情形这样简单。
黎曼这情形也不简单。黎曼普通地就写了一个ds的平方等于一个两次微分式,这个两次微分式积分一下就代表弧的长度。怎样研究这样的几何,这是需要一个像黎曼这种天才才有这个办法。黎曼就发展了他所谓的Riemanncurvaturetensor,黎曼曲率张量。你若要搞这类几何的话,就要有张量的观念。而空间的弯曲性,这个弯曲性解析表示出来也比较复杂了,就是黎曼的曲率张量。
我们现在大家喜欢讲得奖。我们今天发奖,有奖金,要社会与政府对你的工作尊重。当年的时候你要搞数学的话,如果没有数学教授的位置,就没有人付你工资。一个主要的办法就是得奖金。有几个科学院它给奖金,得了奖金后你当然可以维持一段时间,因此就很高兴。不过很有意思的是我想Riemann-Christofell曲率张量是一个很伟大的发现,黎曼就到法兰西科学院申请奖金。科学院的人看不懂,就没有给他。
所以诸位,今天坐在前排几位你们都是得奖人,都是得到光荣的人,我们对于你们寄予很大的期望,后面几排的大多数人没有得过奖,不过我安慰大家,没得过奖不要紧,没得过奖也可以做工作。我想我在得到学位之前,也没有得过奖。得不得到奖不是一个很重要的因素,黎曼就没有得到奖。他的Riemann-Christofell张量在法兰西的科学院申请奖没有得到。
最近虽然在黎曼几何上有很多发展,非常了不得的发展,但是大家对于一般的情形,黎曼论文的一般情形、Finsler几何,没有做很多贡献。很巧的是我在1942年曾写了一篇Finsler几何的论文,就是找能把黎曼几何的结果做到Finsler几何的情形。
最近有两位年轻的中国人,一个叫鲍大维,一个叫沈忠民,我们合写了一本关于Finsler几何的书。这本书就要在Springer-Verlag出版,属于它的GraduateTexts数学丛书。编辑对于我们的书也很喜欢,给了我们一个很有意思的书号:200。书就在这里,我想这本书等会我会交给谷超豪教授,就把它放在复旦大学的某个图书馆里(掌声)
数学学科介绍人谷超豪教授于介绍会讲话,图源:求是科技基金会官网。
我们这本书有一个小小的成就,就是把近一百年来最近在黎曼几何上的发现,我们把它推广到一般的情形,即黎曼-Finsler情形。这是黎曼当年的目的。黎曼当然非常伟大,不过他对于一般的情形不是很重视,他甚至在他的文章里讲这里没有新的东西,我们就把他说的没有新的东西做了一些出来。
我知道我旁边坐了两位伟大的物理学家。接下去我想班门弄斧一下,谈一下物理与几何的关系。我觉得物理学里有很多重要的工作,是物理学家要证明说物理就是几何。
比方说,你从牛顿的第二运动定律开始。牛顿的第二定律说,F=ma,F是力,m是质量,a是加速度,加速度我们现在叫曲率。所以右边这一项是几何量,而力得当然是物理量。所以牛顿费了半天劲,他只是说物理就是几何(大笑,掌声)。不但如此,爱因斯坦的广义相对论也是这样。爱因斯坦的广义相对论的方程说:
Rik - 1/2 gik R=8πKTik
Rik是Ricci曲率,R是scalarcurvature,即标量曲面,K是常数,Tik是energy stress tensor,即能量-应力张量。你仔细想想,他的左边是几何量,是从黎曼度量得出来的一些曲率。所以爱因斯坦的重要方程式也就是说,几何量等于物理量(掌声)
不止是这些,我们可以一直讲下去。我们现在研究的空间叫流形,是一块块空间拼起来的。这个流形不好研究。流形上的度量,你如果要把它能够用方程写下来的话,你一定要把流形线性化,一定要有一个所谓的向量空间,叫vector space。
向量空间有一个好处,它的向量可以相加,可以相减,它还有种种不同的乘法。所以你就可以用解析的方法处理几何的情形。那么一般的流形怎么处理呢?数学家的办法很简单,就是在流形的每一点弄一个切平面。每一点都有个向量空间,叫切空间,跟它相切。
欧几里德空间只有一个切空间。现在的空间情况复杂了一些,每点都有一个切空间,但都是平坦空间。这个现象在几何上有一个重大的发展,就是把切空间竖起来。反正是一把向量空间,给流形的每点一个向量空间,不一定要是流形的切面或切空间。我们就叫它为纤维丛,或叫向量丛,向量空间丛。这个我想比爱因斯坦的(相对论)还要重要。Maxwell方程就是建立在一个向量丛上。
你不是要一把向量空间吗?最好的是一把筷子,这里一维最好是复一维,complex。这把筷子每个都是复空间,它是骗人的一维,其实是二维,是复数空间。复数就有玩意儿了。现在是一把复数,你如果能有法子从这个纤维到另外一个纤维,有一个我们所谓的平行性的话,你就立刻得到Maxwell方程。
现代文明都靠电,控制电的方程的是Maxwell方程。现在纤维丛上有一个平行性,这个平行性的微分,等于电磁场的强度F,然后你把这个F再求它的另外一种微分(余微分)的话,就得到currentvectorJ,即流向量。用下面两个简单的式子,就把Maxwell方程写出来了,dA=F, δF=J。
普通你要念电磁学的书的话,当然需要了解电磁的意义。我不了解。但是要了解电磁学的意义,把方程全部写出来的话,书上往往是一整页,种种的微分呀什么的讲了一大堆。其实简单地说,也就是平行性的微分是场的强度,而场的强度经过某个运算就得到它的流向量。这就是Maxwell方程,与原来的完全一样。所以Maxwell方程就是建立在一维的纤维丛上,不过是一个复一维的纤维丛。
你怎样把每个纤维维拼起来呢?我们需要群的概念。有一个群,群里有一个运算,把一个纤维可以挪到其它一个纤维。纤维如果是一维的,即使是复一维的话,我们需要的群仍旧是可交换的群,叫做Abel group,杨振宁先生了不得。他可以用到一个非Abel群,也很简单,我们叫做SU(2)群。用SU(2)connection,把同样的方程式写出来,就是Yang-Mills方程,DA=F,δF=J。
这有不得了的重要性。我们搞几何学的人觉得有这样的关系,物理学家说你这个关系跟物理有关系,这是非常困难的,并且有基本的重要性。比方说像去年获诺贝尔奖的,我想大家都知道崔琦的名字,做理论方面的所谓Hall效应,也用到我们这些工作。
我们说我们专搞曲率。你要开一个车,路如果弯得多了的话你就要慢下来,直的话你就冲,这就是曲率。曲率要是在高维就比较复杂了,不过也是一些代数,并且可以做得很巧妙。我的一个朋友,也是学生,叫Simons。我们所做的工作就是曲率,就对崔琦跟他们一群得诺贝尔奖的有好处。所以一般讲来,在房子里我们只管扫地,想把房子弄弄干净,弄弄清楚,然后有伟大的物理学家来说你们这个还有道理(大笑,掌声),这个我们也很高兴。
现在几何不仅应用到物理,也应用到生物学中。讲到DNA的构造,是一个双螺线,双螺线有很多几何,许多几何学都在研究这个问题。现在许多主要的大学,念生物的人一定要念几何。现在有很多人研究大一点的compound,这是分子,是由原子配起来的。原子怎么个配法就是几何了。这些几何的观念不再是空虚的,有实际上的化学的意义。
数学比其它科学有利的地方,是它基本上还是个人的工作。即使在僻远的地方,进步也是可能的。当然他需要几个朋友,得切磋之益。谢谢大家。(极其热烈的掌声)
注:本文转载自求是科技基金会官网。
制版编辑 | Morgan
赛先生
启蒙·探索·创造
如果你拥有一颗好奇心
如果你渴求知识
如果你相信世界是可以理解
欢迎关注我们投稿、授权等请联系
继续阅读
阅读原文