点击上方“蓝字”关注“AI开发者”

本文来自 @BBuf 的社区专栏 GiantPandaCV,文末扫码即可订阅专栏。

算法介绍

这是OpenCV图像处理专栏的第十一篇文章,之前介绍过两种处理白平衡的算法,分别为灰度世界算法和完美反射算法。今天来介绍另外一个自动白平衡的算法,即动态阈值法,一个看起来比较厉害的名字。论文原文链接放在附录。

算法原理

和灰度世界法和完美反射算法类似,动态阈值算法仍然分为两个步骤即白点检测和白点调整,具体如下:

白点检测

  • 1、把尺寸为的原图像从空间转换到空间。
  • 2、把图像分成个块。
  • 3、对每个块分别计算,的平均值,。
  • 4、判定每个块的近白区域(near-white region)。判别准则为:-  - ,其中sign为符号函数,即正数返回1,负数返回0。
  • 5、设一个“参考白色点”的亮度矩阵,大小为。
  • 6、若符合判别式,则作为“参考白色点”,并把该点的亮度(分量)值赋给。若不符合,则该点的值为0。

白点调整

  • 1、选取参考“参考白色点”中最大的10%的亮度(Y分量)值,并选取其中的最小值Lu_min
  • 2、调整RL,若RL(i,j)<Lu_min, RL(i,j)=0; 否则,RL(i,j)=1
  • 3、分别把RGBRL相乘,得到R2G2B2。 分别计算R2G2B2的平均值,RavGavBav
  • 4、 得到调整增益:定义Ymax=double(max(max(Y))),则Rgain=Ymax/Rav,Ggain=Ymax/Gav, Bgain=Ymax/Bav
  • 5、调整原图像:Ro= R*Rgain; Go= G*Ggain; Bo= B*Bgain;

代码实现

块的大小取了100,没处理长或者宽不够100的结尾部分,这个可以自己添加。
const float YCbCrYRF = 0.299F;              // RGB转YCbCr的系数(浮点类型)

const float YCbCrYGF = 0.587F;

const float YCbCrYBF = 0.114F;

const float YCbCrCbRF = -0.168736F;

const float YCbCrCbGF = -0.331264F;

const float YCbCrCbBF = 0.500000F;

const float YCbCrCrRF = 0.500000F;

const float YCbCrCrGF = -0.418688F;

const float YCbCrCrBF = -0.081312F;


const float RGBRYF = 1.00000F;            // YCbCr转RGB的系数(浮点类型)

const float RGBRCbF = 0.0000F;

const float RGBRCrF = 1.40200F;

const float RGBGYF = 1.00000F;

const float RGBGCbF = -0.34414F;

const float RGBGCrF = -0.71414F;

const float RGBBYF = 1.00000F;

const float RGBBCbF = 1.77200F;

const float RGBBCrF = 0.00000F;


const int Shift = 20;

const int HalfShiftValue = 1 << (Shift - 1);


const int YCbCrYRI = (int)(YCbCrYRF * (1 << Shift) + 0.5);         // RGB转YCbCr的系数(整数类型)

const int YCbCrYGI = (int)(YCbCrYGF * (1 << Shift) + 0.5);

const int YCbCrYBI = (int)(YCbCrYBF * (1 << Shift) + 0.5);

const int YCbCrCbRI = (int)(YCbCrCbRF * (1 << Shift) + 0.5);

const int YCbCrCbGI = (int)(YCbCrCbGF * (1 << Shift) + 0.5);

const int YCbCrCbBI = (int)(YCbCrCbBF * (1 << Shift) + 0.5);

const int YCbCrCrRI = (int)(YCbCrCrRF * (1 << Shift) + 0.5);

const int YCbCrCrGI = (int)(YCbCrCrGF * (1 << Shift) + 0.5);

const int YCbCrCrBI = (int)(YCbCrCrBF * (1 << Shift) + 0.5);


const int RGBRYI = (int)(RGBRYF * (1 << Shift) + 0.5);              // YCbCr转RGB的系数(整数类型)

const int RGBRCbI = (int)(RGBRCbF * (1 << Shift) + 0.5);

const int RGBRCrI = (int)(RGBRCrF * (1 << Shift) + 0.5);

const int RGBGYI = (int)(RGBGYF * (1 << Shift) + 0.5);

const int RGBGCbI = (int)(RGBGCbF * (1 << Shift) + 0.5);

const int RGBGCrI = (int)(RGBGCrF * (1 << Shift) + 0.5);

const int RGBBYI = (int)(RGBBYF * (1 << Shift) + 0.5);

const int RGBBCbI = (int)(RGBBCbF * (1 << Shift) + 0.5);

const int RGBBCrI = (int)(RGBBCrF * (1 << Shift) + 0.5);


Mat RGB2YCbCr(Mat src) {

int row = src.rows;

int col = src.cols;

Mat dst(row, col, CV_8UC3);

for (int i = 0; i < row; i++) {

for (int j = 0; j < col; j++) {

int Blue = src.at<Vec3b>(i, j)[0];

int Green = src.at<Vec3b>(i, j)[1];

int Red = src.at<Vec3b>(i, j)[2];

dst.at<Vec3b>(i, j)[0] = (int)((YCbCrYRI * Red + YCbCrYGI * Green + YCbCrYBI * Blue + HalfShiftValue) >> Shift);

dst.at<Vec3b>(i, j)[1] = (int)(128 + ((YCbCrCbRI * Red + YCbCrCbGI * Green + YCbCrCbBI * Blue + HalfShiftValue) >> Shift));

dst.at<Vec3b>(i, j)[2] = (int)(128 + ((YCbCrCrRI * Red + YCbCrCrGI * Green + YCbCrCrBI * Blue + HalfShiftValue) >> Shift));

}

}

return dst;

}


Mat YCbCr2RGB(Mat src) {

int row = src.rows;

int col = src.cols;

Mat dst(row, col, CV_8UC3);

for (int i = 0; i < row; i++) {

for (int j = 0; j < col; j++) {

int Y = src.at<Vec3b>(i, j)[0];

int Cb = src.at<Vec3b>(i, j)[1] - 128;

int Cr = src.at<Vec3b>(i, j)[2] - 128;

int Red = Y + ((RGBRCrI * Cr + HalfShiftValue) >> Shift);

int Green = Y + ((RGBGCbI * Cb + RGBGCrI * Cr + HalfShiftValue) >> Shift);

int Blue = Y + ((RGBBCbI * Cb + HalfShiftValue) >> Shift);

if (Red > 255) Red = 255; else if (Red < 0) Red = 0;

if (Green > 255) Green = 255; else if (Green < 0) Green = 0;    // 编译后应该比三目运算符的效率高

if (Blue > 255) Blue = 255; else if (Blue < 0) Blue = 0;

dst.at<Vec3b>(i, j)[0] = Blue;

dst.at<Vec3b>(i, j)[1] = Green;

dst.at<Vec3b>(i, j)[2] = Red;

}

}

return dst;

}


template<typename T>

inline T sign(T const &input) {

return input >= 0 ? 1 : -1;

}


Mat AutomaticWhiteBalanceMethod(Mat src) {

int row = src.rows;

int col = src.cols;

if (src.channels() == 4) {

cvtColor(src, src, CV_BGRA2BGR);

}

Mat input = RGB2YCbCr(src);

Mat mark(row, col, CV_8UC1);

int sum = 0;

for (int i = 0; i < row; i += 100) {

for (int j = 0; j < col; j += 100) {

if (i + 100 < row && j + 100 < col) {

Rect rect(j, i, 100, 100);

Mat temp = input(rect);

Scalar global_mean = mean(temp);

double dr = 0, db = 0;

for (int x = 0; x < 100; x++) {

uchar *ptr = temp.ptr<uchar>(x) + 1;

for (int y = 0; y < 100; y++) {

dr += pow(abs(*ptr - global_mean[1]), 2);

ptr++;

db += pow(abs(*ptr - global_mean[2]), 2);

ptr++;

ptr++;

}

}

dr /= 10000;

db /= 10000;

double cr_left_criteria = 1.5 * global_mean[1] + dr * sign(global_mean[1]);

double cr_right_criteria = 1.5 * dr;

double cb_left_criteria = global_mean[2] + db * sign(global_mean[2]);

double cb_right_criteria = 1.5 * db;

for (int x = 0; x < 100; x++) {

uchar *ptr = temp.ptr<uchar>(x) + 1;

for (int y = 0; y < 100; y++) {

uchar cr = *ptr;

ptr++;

uchar cb = *ptr;

ptr++;

ptr++;

if ((cr - cb_left_criteria) < cb_right_criteria && (cb - cr_left_criteria) < cr_right_criteria) {

sum++;

mark.at<uchar>(i + x, j + y) = 1;

}

else {

mark.at<uchar>(i + x, j + y) = 0;

}

}

}

}

}

}


int Threshold = 0;

int Ymax = 0;

int Light[256] = { 0 };

for (int i = 0; i < row; i++) {

for (int j = 0; j < col; j++) {

if (mark.at<uchar>(i, j) == 1) {

Light[(int)(input.at<Vec3b>(i, j)[0])]++;

}

Ymax = max(Ymax, (int)(input.at<Vec3b>(i, j)[0]));

}

}

printf("maxY: %d\n", Ymax);

int sum2 = 0;

for (int i = 255; i >= 0; i--) {

sum2 += Light[i];

if (sum2 >= sum * 0.1) {

Threshold = i;

break;

}

}

printf("Threshold: %d\n", Threshold);

printf("Sum: %d Sum2: %d\n", sum, sum2);

double Blue = 0;

double Green = 0;

double Red = 0;

int cnt2 = 0;

for (int i = 0; i < row; i++) {

for (int j = 0; j < col; j++) {

if (mark.at<uchar>(i, j) == 1 && (int)(input.at<Vec3b>(i, j)[0]) >= Threshold) {

Blue += 1.0 * src.at<Vec3b>(i, j)[0];

Green += 1.0 * src.at<Vec3b>(i, j)[1];

Red += 1.0 * src.at<Vec3b>(i, j)[2];

cnt2++;

}

}

}

Blue /= cnt2;

Green /= cnt2;

Red /= cnt2;

printf("%.5f %.5f %.5f\n", Blue, Green, Red);

Mat dst(row, col, CV_8UC3);

double maxY = Ymax;

for (int i = 0; i < row; i++) {

for (int j = 0; j < col; j++) {

int B = (int)(maxY * src.at<Vec3b>(i, j)[0] / Blue);

int G = (int)(maxY * src.at<Vec3b>(i, j)[1] / Green);

int R = (int)(maxY * src.at<Vec3b>(i, j)[2] / Red);

if (B > 255) B = 255; else if (B < 0) B = 0;

if (G > 255) G = 255; else if (G < 0) G = 0;

if (R > 255) R = 255; else if (R < 0) R = 0;

dst.at<Vec3b>(i, j)[0] = B;

dst.at<Vec3b>(i, j)[1] = G;

dst.at<Vec3b>(i, j)[2] = R;

}

}

return dst;

}

效果

图像均为算法处理前和处理后的顺序。

附录

论文原文:http://140.112.114.62/bitstream/246246/200704191001444/1/01465458.pdf
参考文章:https://www.cnblogs.com/Imageshop/archive/2013/04/20/3032062.html

后记

对比前面的灰度世界算法和完美反射算法后,这个算法的效果确实要好很多,原文的内容基本上我的博客就写完了,感兴趣可以再去读读原文。
扫码订阅专栏
点击 阅读原文,查看专栏更多内容
继续阅读
阅读原文