海归学者发起的公益学术平台
分享信息,整合资源

交流学术,偶尔风月
认识和理解富电子的电子化合物有望为各种电子和催化应用提供一个很有前途的机会。
来自东京理工大学高压科学与技术高级研究中心的Huiyang Gou和东京理工大学的Hideo Hosono领导的团队开发了一种基于几何识别和高通量从头算的材料筛选策略,确定了各种化学计量比的钇、钪氯化物及组合结构中新的准一维和准二维电子化合物。阴离子电子存在于金属八面体骨架拓扑结构中。他们发现这些材料具有独特的特征,比如R-Cl的密堆积结构(R为Y或Sc)和八面体框架拓扑结构。他们将这些电子化合物的不同电子维度由准二维电子化合物和准一维电子化合物精确量化。其中,准二维电子化合物为[YCl]+e和[ScCl]+e,准一维电子化合物为含有二价金属元素(Sc2+: 3d1和Y2+: 4d1)的[Y2Cl3]+e、[Sc7Cl10]+e和[Sc5Cl8]2+∙2e。准1D、2D电子化合物的局部阴离子电子被限制在内层空间中,而不是在A2B-型2D电子化合物(如Ca2N)那样在层间空间中。此外,当氢原子被引入到框架结构中形成YClH和Y2Cl3H时,形成的相转变为传统的离子化合物,但由于费米能级能量的增加,其功函数显著降低,这与迄今为止报道的常规电子化合物相反。仅Y2Cl3为一个半导体,实验测得的带隙为1.14eV ,其它结构均具有铁磁性。这些结果可能有助于促进新的电子化合物材料的理性设计和理性探索,为后续技术应用奠定基础。
该文近期发表于npj Computational Materials 4: 77 (2018),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。
Identifying quasi-2D and 1D electrides in yttrium and scandium chlorides via geometrical identification
Biao Wan, Yangfan Lu, Zewen Xiao, Yoshinori Muraba, Junghwan Kim, Dajian Huang, Lailei Wu, Huiyang Gou, Jingwu Zhang, Faming Gao, Ho-kwang Mao & Hideo Hosono 
Developing and understanding electron-rich electridesoffers a promising opportunity for a variety of electronic and catalyticapplications. Using a geometrical identification strategy, here we identify anew class of electride material, yttrium/scandium chlorides Y(Sc)xCly (y:x<2). Anionic electrons are found in the metal octahedralframework topology. The diverse electronic dimensionality of these electridesis quantified explicitly by quasi-two-dimensional (2D) electrides for [YCl]+∙e and[ScCl]+∙e and one-dimensional (1D) electrides for[Y2Cl3]+∙e, [Sc7Cl10]+∙e,and [Sc5Cl8]2+∙2e withdivalent metal elements (Sc2+: 3d1 and Y2+:4d1). The localized anionic electrons were confined withinthe inner-layer spaces, rather than inter-layer spaces that are observedin A2B-type 2D electrides, e.g. Ca2N. Moreover,when hydrogen atoms are introduced into the host structures to form YClH and Y2Cl3H,the generated phases transform to conventional ionic compounds but exhibited asurprising reduction of work function, arising from the increased Fermi levelenergy, contrary to the conventional electrides reported so far. Y2Cl3 wasexperimentally confirmed to be a semiconductor with a band gap of 1.14eV. These results may help to promote the rational designand discovery of new electride materials for further technologicalapplications.
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方
继续阅读
阅读原文