海归学者发起的公益学术平台
分享信息,整合资源

交流学术,偶尔风月
合金的力学性能在微观尺度上与电子和原子行为有关; 然而,原子键合的强度并不直接关联材料宏观的力学性能,如屈服强度、断裂韧性和耐疲劳性等。这是因为介观尺度的微观结构包括各种缺陷,如杂质、晶界和位错,它们干预或增强了合金对外力的响应,引起非线性和多尺度现象。来自日本东北大学的Tetsuo Mohri及其同事,结合电子结构计算和统计力学手段,对富Fe硅合金力学性能的物理起源问题作了综述。用电子结构计算研究弹性性能,可将Si含量增加时延展性损失的物理起源,归因于磁体积和D03有序的组合效应。以形成微结构的异质性为例,用高精度电子结构计算研究Si原子的偏析行为,可以找到两种分离位点,即松散位点和紧密位点,其分离机制因场所而异。通过电子结构计算,结合分子动力学模拟,对固溶硬化和软化作了解释。此外,他们还基于动力学蒙特卡罗模拟,讨论了特定加工硬化行为的线索。该文近期发表于npj Computational Materials 3:10 (2017),标题与摘要如下。点击阅读原文,可以自由下载论文PDF。
原文链接:(http://www.nature.com/articles/s41524-017-0012-4)
Mechanical properties of Fe-rich Si alloy from Hamiltonian (用哈密尔顿计算揭示富Fe硅合金的力学性能)
Testsuo Mohri, Ying Chen, Masanori Kohyama, Shigenobu Ogata, Arkapol Saengdeejing, Somesh Kumar Bhattacharya, Masato Wakeda, Shuhei Shinzato & Hajime Kimizuka
The physical origins of the mechanical properties of Fe-rich Si alloys are investigated by combining electronic structure calculations with statistical mechanics means such as the cluster variation method, molecular dynamics simulation, etc, applied to homogeneous and heterogeneous systems. Firstly, we examined the elastic properties based on electronic structure calculations in a homogeneous system and attributed the physical origin of the loss of ductility with increasing Si content to the combined effects of magneto-volume and D03 ordering. As a typical example of a heterogeneity forming a microstructure, we focus on grain boundaries, and segregation behavior of Si atoms is studied through high-precision electronic structure calculations. Two kinds of segregation sites are identified: looser and tighter sites. Depending on the site, different segregation mechanisms are revealed. Finally, the dislocation behavior in the Fe–Si alloy is investigated mainly by molecular dynamics simulations combined with electronic structure calculations. The solid-solution hardening and softening are interpreted in terms of two kinds of energy barriers for kink nucleation and migration on a screw dislocation line. Furthermore, the clue to the peculiar work hardening behavior is discussed based on kinetic Monte Carlo simulations by focusing on the preferential selection of slip planes triggered by kink nucleation.
原文链接:(http://www.nature.com/articles/s41524-017-0012-4)
欢迎广大学者供稿,报道最新研究成果
投稿、授权、合作事宜请联系
[email protected] 或微信ID: scholarset
回复“目录”或“”,浏览知社更多精华。长按二维码识别,可以关注/进入公众号进行回复。
继续阅读
阅读原文