海归学者发起的公益学术平台
分享信息,整合资源

交流学术,偶尔风月
近日,吉林大学电子科学与工程学院、集成光电子学国家重点实验室徐速教授,联合浙江大学余显斌教授、天津大学韩家广教授、清华大学孙洪波教授通过探索拓扑异相能谷光子晶体之间耦合及解耦合带来的调控机制,实现了工作在太赫兹频率下的全硅灵活复用芯片。相关研究成果线发表于《国家科学评论》(National Science Review, NSR)。
太赫兹波段是介于微波和红外之间的缝隙波段,在6G通信等诸多前沿信息领域均展现了巨大的应用潜力。太赫兹硅基光子学,具有传输效率高等诸多优势,是实现太赫兹器件的有效平台。然而,如何在太赫兹波段实现功能更为丰富的器件、或者拓展器件调控能力,仍是太赫兹集成光子学的研究热点。
图1. 太赫兹灵活复用芯片示意图
在该研究中,作者提出了一种基于拓扑层间耦合调控的芯片设计方法。这种方法利用双层能谷光子晶体的层间耦合强度,来调控双层拓扑光子系统的哈密顿量:
H = HT + HB + HTB
其中HTHB分别代表顶层和底层光子晶格的哈密顿量,而HTB用于描述由于层间耦合产生的哈密顿量。通过层间距离的调控,可以有效控制系统处于耦合状态或解耦状态,并调节层间耦合哈密顿量HTB,进而控制光子系统的拓扑相变。由于体-边对应关系,相变前后的拓扑边界模式可以分布在不同的空间路径。通过模块化的拓扑相设计,作者实现了图1所示的灵活复用芯片。
为了验证技术方案在下一代通信中的潜在应用价值,研究团队对芯片进行了太赫兹通信性能的有关测试(图2.a)。该复用芯片在120 GHz和130 GHz两个可切换信道上分别实现了10 Gbps 和12Gbps的16-QAM信号传输,可用带宽分别为2.5 GHz和3 GHz(图2.b)。
图2. 太赫兹无线通信测试系统及测试结果
这一工作丰富了太赫兹片上信道操控的方法,进一步推动了拓扑光子学在先进通信系统和器件中的应用,并可能启发双层以及多层拓扑系统中更新奇的物理机制和现象。
该研究工作得到国家自然科学基金、吉林省自然科学基金(优秀青年基金项目)、中央高校基本科研业务费等项目资助,并得到吉林大学陈岐岱教授的大力支持。
点击“阅读原文”阅读原文。
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方
继续阅读
阅读原文